Cristian S. Calude
Michael J. Dinneen
Gheorghe Paun
Grzegorz Rozenberg
Susan Stepney (Eds.)

Unconventional
Computation

5th International Conference, UC 2006
York, UK, September 2006
Proceedings

LNCS 4135

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4135

Cristian S. Calude Michael J. Dinneen
Gheorghe Paun Grzegorz Rozenberg
Susan Stepney (Eds.)

Unconventional
Computation

5th International Conference, UC 2006
York, UK, September 4-8, 2006
Proceedings

@ Springer

Volume Editors

Cristian S. Calude

Michael J. Dinneen

University of Auckland, Department of Computer Science
Private Bag 92019, Auckland, New Zealand

E-mail: {cristian,mjd} @cs.auckland.ac.nz

Gheorghe Paun

Institute of Mathematics of Romanian Academy

P.O. Box 1-764, 014700 Bucuresti, Romania

and

Sevilla University, Department of Computer Science and Al
Avda Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: gpaun@us.es

Grzegorz Rozenberg

Leiden University, Leiden Center of Advanced Computer Science (LIACS)
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

E-mail: rozenber @liacs.nl

Susan Stepney

University of York, Department of Computer Science
Heslington, York, YO10 5DD, UK

E-mail: susan@cs.york.ac.uk

Library of Congress Control Number: 2006931474

CR Subject Classification (1998): F.1, .2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-38593-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38593-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11839132 06/3142 543210

Preface

The 5th International Conference on Unconventional Computation, UC 2006,
organized under the auspices of the EATCS by the Centre for Discrete Mathe-
matics and Theoretical Computer Science of the University of Auckland, and the
Department of Computer Science of the University of York, was held in York,
UK, September 4-8, 2006.

York combines evidence of a history going back to Roman times with a
bustling modern city center. The Minster, built on the foundations of the Roman
city and an earlier Norman cathedral, is among the finest Gothic cathedrals, and
dominates the city. Romans, Vikings, and more recent history are commemorated
in a number of top-class museums, as well as being apparent in the architecture
of the city.

The series of International Conferences on Unconventional Computation (UC),
https://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/, is devoted to all
aspects of unconventional computation, theory as well as experiments and
applications. Typical, but not exclusive, topics are: natural computing includ-
ing quantum, cellular, molecular, neural and evolutionary computing; chaos and
dynamical systems-based computing; and various proposals for computations that
go beyond the Turing model.

The first venue of the Unconventional Computation Conference (formerly
called Unconventional Models of Computation) was Auckland, New Zealand in
1998; subsequent sites of the conference were Brussels, Belgium in 2000, Kobe,
Japan in 2002, and Seville, Spain in 2005.

The titles of volumes of the past UC conferences are the following:

1. C.S. Calude, J. Casti, M.J. Dinneen (eds.). Unconventional Models of Com-
putation, Springer, Singapore, 1998, viii + 426 pp. ISBN: 981-3083-69-7.

2. I. Antoniou, C.S. Calude, M.J. Dinneen (eds.). Unconventional Models of
Computation, UMC’2K, Springer, London, December 2000, xi + 301 pp.
ISBN 1-85233-417-0.

3. C.S. Calude, M.J. Dinneen, F. Peper (eds.). Third International Confer-
ence, UMC 2002, Proceedings Lecture Notes in Computer Science, Vol. 2509,
Springer, Heidelberg, 2002, vii + 331 pp. ISBN: 3-540-44311-8.

4. C.S. Calude, M.J. Dinneen, M.J. Pérez-Jiménez, Gh. Paun, G. Rozenberg
(eds.). Proc. 4th International Conference Unconventional Computation,
Lecture Notes in Computer Science, Vol. 3699, Springer, Heidelberg, 2005,
xi + 267 pp. ISBN: 3-540-29100-8.

The Steering Committee of the series of International Conferences on Uncon-
ventional Computation includes T. Béck (Leiden, The Netherlands), C.S. Calude
(Auckland, New Zealand, Co-chair), L.K. Grover (Murray Hill, NJ, USA), J. van
Leeuwen (Utrecht, The Netherlands), S. Lloyd (Cambridge, MA, USA), Gh. Paun

VI Preface

(Bucharest, Romania, and Seville, Spain), T Toffoli (Boston, MA, USA), C. Tor-
ras (Barcelona, Spain), G. Rozenberg (Leiden, The Netherlands, and Boulder,
Colorado, USA, Co-chair), A. Salomaa (Turku, Finland).

The five key-note speakers of the conference were:

1. Gerard Dreyfus (ESPCI, Paris, France): Graph Machines and Their Appli-
cations to Computer-Aided Drug Design: A New Approach to Learning from
Structured Data

2. Michael C. Mozer (Department of Computer Science, and Institute of Cogn-

tive Science, University of Colorado, USA): Rational Models of Cognitive

Control

Reidun Twarock (University of York, UK): Self-Assembly in Viruses

4. Erik Winfree (Computer Science and Computation & Neural Systems, Cal-
ifornia Institute of Technology): Fault-Tolerance in Biochemical Systems

5. Damien Woods (University College Cork, Ireland): Optical Computing and
Computational Complexity

w

UC 2006 included the following tutorials:

1. Andrew Adamatzky, Benjamin De Lacy Costello, Tetsuya Asai (Computing,
Engineering and Mathematical Sciences, University of the West of England,
Bristol, UK): Reaction-Diffusion Computers

2. Cristian S. Calude (University of Auckland, New Zealand): Computing with
Randomness

3. Natasa Jonoska (University of South Florida, USA), and Darko Stefanovic
(University of New Mexico, USA): Biomolecular Automata

4. Viv Kendon (University of Leeds, UK): Quantum Computing

5. Joseé del R. Milldn (Institute for Systems, Informatics and Safety Joint
Research Centre, Ispra, Italy): Brain Signal Analysis

6. Christof Teuscher (LANL, USA): To Compute, or not to Compute

The workshop “From Utopian to Genuine Unconventional Computers” was
part of this year’s conference.

The Programme Committee thanks the much appreciated work done by the
paper reviewers for the conference. These experts were: Nevil Brownlee, Sam
Braunstein, Douglas S. Bridges, Matteo Cavaliere, Cristian S. Calude, S. Barry
Cooper, Jack Copeland, David Corne, Gabor Csardi, Erzsebet Csuhaj-Varju,
Michael J. Dinneen, Peter Erdi, Marian Gheorghe, Georgy Gimel’farb, James
Goodman, Jozef Gruska, Oscar H. Ibarra, Mario de Jesus Pérez-Jiménez, Natasa
Jonoska, Jarko Kari, Jan van Leeuwen, Chang Li, Rossella Lupacchini, Joseé del
R. Millan, Pablo Moscato, Andrei Paun, Gheorghe Paun, Ion Petre, Vladimir
Rogojin, Ulrich Speidel, Susan Stepney, Karl Svozil, Carme Torras, Christof
Teuscher, Hiroshi Umeo.

The Programme Committee consisting of J.-P. Banatre (Rennes, France),
S. Braunstein (York, UK), C.S. Calude (Auckland, New Zealand, Co-chair),
B. Cooper (Leeds, UK), D. Corne (Exeter, UK), M.J. Dinneen (Auckland, New
Zealand, Secretary), P. Erdi (Kalamazoo, MI, USA), E. Goles (Santiago, Chile),

Preface VII

N. Jonoska (Tampa, FL, USA), J. Kari (Turku, Finland), J. van Leeuwen
(Utrecht, Netherlands), R. Lupacchini (Bologna, Italy), J. del R. Millan (Ispra,
Italy), Gh. Paun (Bucharest, Romania, and Seville, Spain, Co-chair), M.J. Pérez-
Jiménez (Seville, Spain), I. Petre (Turku, Finland), P. Prusinkiewicz (Calgary,
Canada), C. Teuscher (LANL, Los Alamos, USA), C. Torras (Barcelona, Spain),
H. Umeo (Osaka, Japan), S. Stepney (York, UK), K. Svozil (Vienna, Austria),
selected 17 papers (out of 36) to be presented as regular contributions.

We extend our thanks to all members of the Conference Committee, particu-
larly to L. Caves, E. Clark, K. Clegg, G. Danks, O. Leyser (Co-chair), F. Polack,
S. Stepney (Co-chair), J. Timmis, H. Turner, A. Weeks, J. Wright, for their
invaluable organizational work.

We thank the University of York and the Centre for Discrete Mathematics
of the University of Auckland for their technical support. The hospitality of our
hosts, the Department of Computer Science of the University of York, is much
appreciated.

The conference was partially supported by the Department of Biology of the
University of York, the Enterprise and Innovation office of of the University
of York, Microsoft Research, EPSRC, and the University consortium “White
Rose”; we extend to all our gratitude.

It is a great pleasure to acknowledge the fine cooperation with the Lecture
Notes in Computer Science team of Springer for producing this volume in time
for the conference.

June 2006 C.S. Calude
M.J. Dinneen

Gh. Paun

G. Rozenberg

S. Stepney

Table of Contents

Invited Papers

Graph Machines and Their Applications to Computer-Aided Drug
Design: A New Approach to Learning from Structured Data
Aurélie Goulon, Arthur Duprat, Gérard Dreyfus 1

Rational Models of Cognitive Control
Michael C. Mozerc.oo e 20

Fault-Tolerance in Biochemical Systems
Erik Winfree 26

Optical Computing and Computational Complexity
Damien Woods 27

Regular Papers

If a Tree Casts a Shadow Is It Telling the Time?
Russ ADDOLE . . oo oo 41

Peptide Computing — Universality and Theoretical Model
M. Sakthi Balan, Helmut JUrgensemc.c.ouuiieinnon . 57

Handling Markov Chains with Membrane Computing
Ménica Cardona, M. Angels Colomer, Mario J. Pérez-Jiménez,
Alba Zaragozao 72

Approximation Classes for Real Number Optimization Problems
Uffe Flarup, Klaus Meer i 86

Physical Systems as Constructive Logics
Peter Hines 101

On Spiking Neural P Systems and Partially Blind Counter Machines
Oscar H. Ibarra, Sara Woodworth, Fang Yu, Andrei Paun 113

Chemical Information Processing Devices Constructed Using
a Nonlinear Medium with Controlled Excitability
Yasuhiro Igarashi, Jerzy Gorecki, Joanna Natalia Gorecka 130

X Table of Contents

Flexible Versus Rigid Tile Assembly
Natasa Jonoska, Gregory L. McColm

On Pure Catalytic P Systems
Shankara Narayanan Krishna i,

Mapping Non-conventional Extensions of Genetic Programming
W.B. Langdon e

The Number of Orbits of Periodic Box-Ball Systems
Akihiro Mikoda, Shuichi Inokuchi, Yoshihiro Mizoguchi,
Mitsuhtko FUfio

The Euclid Abstract Machine: Trisection of the Angle and the Halting
Problem
Jerzy Mycka, Francisco Coelho, José Félix Costa

1/f Noise in Elementary Cellular Automaton Rule 110
Shigeru NiNQGawa

A Light-Based Device for Solving the Hamiltonian Path Problem
Mihai Olteamn o e

Optimizing Potential Information Transfer with Self-referential
Memory
Mikhail Prokopenko, Daniel Polani, Peter Wang

On the Power of Bio-Turing Machines
H. Ramesh, Shankara Narayanan Krishna, Raghavan Rama

Ergodic Dynamics for Large-Scale Distributed Robot Systems
Dylan A. Shell, Maja J. Matarié

Author Index e

Graph Machines and Their Applications to
Computer-Aided Drug Design: A New Approach to
Learning from Structured Data

Aurélie Goulon', Arthur Duprat" %, and Gérard Dreyfus'

!"Laboratoire d’Electronique,
% Laboratoire de Chimie Organique, (CNRS UMR 7084)
Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
(ESPCI-ParisTech)
10 rue Vauquelin, 75005 PARIS, France
Aurelie.Goulon@espci.fr, Arthur.Duprat@espci.fr,
Gerard.Dreyfus@espci.fr

Abstract. The recent developments of statistical learning focused on vector
machines, which learn from examples that are described by vectors of features.
However, there are many fields where structured data must be handled; there-
fore, it would be desirable to learn from examples described by graphs. Graph
machines learn real numbers from graphs. Basically, for each graph, a separate
learning machine is built, whose algebraic structure contains the same informa-
tion as the graph. We describe the training of such machines, and show that
virtual leave-one-out, a powerful method for assessing the generalization
capabilities of conventional vector machines, can be extended to graph ma-
chines. Academic examples are described, together with applications to the pre-
diction of pharmaceutical activities of molecules and to the classification of
properties; the potential of graph machines for computer-aided drug design are
highlighted.

1 Introduction

Whether neural networks still fall in the category of “unconventional” computational
methods is a debatable question, since that technique is well understood and widely
used at present; its advantages over conventional regression methods are well docu-
mented and mathematically proven. Neural networks are indeed conventional in that
they learn from vector data: typically, the variables of the neural model are in the
form of a vector of numbers. Therefore, before applying learning techniques to neural
networks, or any other conventional learning machine (Support Vector Machine,
polynomial, multilinear model, etc.), the available data must be turned into a vector of
variables; the learning machine then performs a mapping of a set of input vectors to a
set of output vectors. In most cases, the output is actually a scalar, so that the mapping

is from R” to R, where n is the dimension of the input vectors. When modeling a

physical process for instance, the factors that have an influence on the quantity to be
modeled are known from prior analysis, so that the construction of the vector of

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 1 -19, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 A. Goulon, A. Duprat, and G. Dreyfus

variables is straightforward, requiring simply normalization, and possibly variable se-
lection by statistical methods.

In many cases of interest, however, encoding the data into a vector cannot be per-
formed without information loss. Such is the case whenever the information to be
learnt from is structured, i.e. is naturally encoded into a graph. In scene analysis for
instance, a scene can be encoded into a graph that describes the relationships between
the different parts of the scene. In computer-aided drug design, the purpose of learn-
ing is a mapping of the space of molecules to the space of pharmaceutical activities;
in most cases, the structure of the molecule explains, to a large extent, its activity.
Since molecular structures are readily described by graphs, QSAR (Quantitative
Structure-Activity Relationships) aims at mapping the space of the graphs of molecu-
lar structures to the space of molecular activities or properties.

In the present paper, we describe an approach to learning that can be termed uncon-
ventional insofar as its purpose is a mapping of graphs to real numbers (or vectors) in-
stead of a mapping of vectors to real numbers. The latter quantities may be either real-
valued (graph regression) or binary (graph classification). The idea of learning from
graphs (and generally structured data) can be traced back to the early days of machine
learning, when Recursive Auto-Associative Memories (RAAMs) were designed for
providing compact representations of trees [1]. It evolved subsequently to Labeled
RAAMs [2], recursive networks [3], and graph machines (for a review of the develop-
ment of numerical machine-learning from structured data, see [4]).

The first part of the paper is devoted to a description of graph machines and of
some didactic, toy problems. It will also be shown that model selection methods that
are proved to be efficient for conventional machine learning can be extended to graph
machines. The second part of the paper will describe novel applications of graph ma-
chines to the prediction and classification of the properties or activities of molecules,
a research area known as QSAR/QSPR (Quantitative Structure-Activity/Structure-
Property Relationships). We show that graph machines are particularly powerful in
that area, because they avoid a major problem of that field: the design, computation
and selection of molecular descriptors.

2 Graph Machines

We first provide the definitions and notations for handling acyclic graphs, and the
construction of graph machines from general graphs (possibly cyclic). Academic
problems are described as illustrations. It is shown that the training and model selec-
tion methods developed for vector machines can be extended to graph machines.

2.1 Handling Directed Acyclic Graphs

Definitions: we consider the mapping from a set of acyclic graphs G to a set of real-
valued numbers.

For each acyclic graph G; of G, a parameterized function g R” — R is constructed,

which is intended (i) to encode the structure of the graph [5], and (ii) to provide a pre-
diction of the quantity of interest, e.g. a property or an activity of the molecule, from
G;. It is constructed as follows. A parameterized function fy (“node function) is

Graph Machines and Their Applications to Computer-Aided Drug Design 3

associated to each node. 8 denotes the vector of parameters of the node function. All
nodes, except the root node, have the same node function fy; those functions are com-
bined in such a way that g’ has the same structure as graph G;: if an edge from node k
to node [exists in the graph, then the value of the node function associated to node
is a variable of the node function associated to node /. The root node may be assigned
a different function, denoted by Fg, where @ is the vector of parameters of Fg. If the
node functions are neural networks, the gi’s are termed recursive neural networks [3].

Notations: the following notations are used throughout the paper.

We denote by x; the (optional) vector of labels that provide information about node j
of graph G;. The size of the label vector is denoted by X;; it is the same for all nodes
of a given graph. Therefore, the parameterized function associated to G; will be de-

noted as g(;’@ (x],xz,...,xv), where V; is the number of nodes of graph G;. If no spe-

cific information about the node is necessary, has no variable: its value depends

800
only on the structure of graph G;.

We denote by z; the vector of variables of the node function fy(z;) of the non-root
node j of graph G;. Denoting by d; the in-degree of non-root node j, and defining
M, =arg max dj , the size of vector z; is equal to D; = M; + X; + 1. The vectors of vari-

J
ables of the node functions fy(z;) are constructed as follows: for all j, the first compo-
nent z(; is equal to 1 (the “bias” if fg(z,) is a neural network, the constant term if fy(z;)

. d.
is an affine function); for node j, of in-degree d;, components z; to z/,f are the values

of the node functions assigned to the parent nodes of node j; if d; < M;, components
d;+1
j

node j.

to z;”' are equal to zero; if X; # 0, components z;”"“ to zj’."'”" are the labels of

We denote by y; the vector of variables of the node function Fy (y,_) of the root
node of graph G;. The size of y; is 4; = d, + X, + 1, where d, denotes the in-degree of
the root node and X, the size of its vector of labels. y? is equal to 1 (bias), yi' to yl.d’
are the values of the node functions assigned to the parent nodes of the root node,

d +1

y, to y % are the labels assigned to the root node.

As an example, Fig. 1 shows an acyclic graph G, with maximum in-degree M, = 2;
the corresponding graph machine is:

Gao (X%senxy) = By (%)) = Fy (x4 4 (350 4(2,):0) Sy (%0 £y (2)- Sy (%0 £ (). 46 () (D)

If no information about the nodes is required by the problem at hand (X; = 0), one
has D =3, and:

o
SN—
-
N
S
1l
———
k.
BN
—
N
SN—
BN
A~
SN—
==
-

4 A. Goulon, A. Duprat, and G. Dreyfus

®
1

Graph G, Graph machine
Fig. 1. An acyclic graph and its graph machine

2.2 Cyclic Graphs

Graph machines handle cyclic graphs and parallel edges. To that effect, the initial
graph is preprocessed by deleting a number of edges equal to the number of cycles,
and all parallel edges but one; moreover, a label is assigned to each node: it is equal to
the degree of the node, thereby retaining the information about the original graph
structure. Finally, a root node is chosen and the edges are assigned orientations, ac-
cording to an algorithm described in [6].

2.3 The Training of Graph Machines

Graph machines are trained in the usual framework of empirical risk minimization. A
cost function J(©,0) is defined, and its minimum with respect to the parameters is
sought, given the available training data. The cost function takes into account the dis-
crepancy between the predictions of the models and the observations present in the
training set, and may include regularization terms, e.g.:

N
J(0.0)=X(v" ~g50) +1[6]+ 2]€]. @

i=1

Graph Machines and Their Applications to Computer-Aided Drug Design 5

where N is the size of the training set, y' is the value of the i-th observation of the
quantity to be modeled, and A; and A, are suitably chosen regularization constants.

Since the parameter vectors © and @ must be identical within each function g’ and
across all those functions, one must resort to the so-called shared weight trick; the
k-th component of the gradient of the cost function can be written as

(0.8) <o

where J' is the contribution of example i to the cost function. We denote by n; the
k

number of occurrences of parameter 6, in acyclic graph G;; if the root is assigned the

same parameterized function as the other nodes, then n’

, 1s equal to the number of
k

nodes in graph G;. The shared weight trick consists in setting

aii = N o [4)
so that one has finally:
27(6.0) i & o
— ®)

aek 96,

i=1 j=
Relation (5) is subsequently used for minimizing cost function (2) by any suitable
gradient descent algorithm (Levenberg-Marquardt, BFGS, conjugate gradient, ...).

If functions fg and Fg are neural networks, the usual backpropagation algorithm
may be conveniently used for computing the gradient; otherwise, one resorts to nu-
merical estimations thereof.

2.4 Didactic Examples: Learning the Number of Nodes and the Number of
Cycles of a Graph

In the present section, two simple examples are provided, whose solutions can be
worked out analytically because they are linear. In both cases, we consider the train-
ing set made of three graphs, shown on Fig. 2.

Learning the number of nodes of a graph: first, assume that it is desired to learn,
from examples, the number of nodes of a graph. Then the desired mapping is: G;—4;
G,—8; G;—9. Moreover, generalization should be performed by using the node
functions thus obtained in any other graph machine, i.e. to compute the number of
nodes of any graph.

The first step consists in constructing directed acyclic graphs (DAGs) from the ini-
tial graphs. The construction of the DAGs is obvious for G; and G,. Since graph G3
has four cycles, four edges must be deleted. Fig. 3 shows the directed acyclic graphs
on which the graph machines will be based.

6 A. Goulon, A. Duprat, and G. Dreyfus

8
. 7 9 8
5
3 4
6
4 4
3
7
1@ 1

1 2 3
Graph G, Graph G, Graph G,
Fig. 2. A training set
D-1
The node function fg is sought in the family of affine functions fy (z) = szj ,
J=0

and Fg is taken identical to fy. Since the presence or absence of an edge is irrelevant
for the computation of the number of nodes, no label is necessary: X; = X, = X3 = 0.
The node functions being the same for all graphs of the training set, we take

D =max M,+1=35. Since all edges are equivalent, one has 6, = & = & = 6, = 6.

i

Therefore, there are actually two independent parameters only.
The obvious solution is &, = 8= 1. For graph G, for instance, one has:

g‘;’e (xl,xz,x3,x4): fe(l,fe(zl),fe(zz),fe(z3),0):90 +3600,=4,

T

Wherezl:zzzz3:(l 0 0 O 0)

7 9 8
3 \4
5 6
4
2
2
1
1 2 3

Graph G, Graph G, Graph G,

Fig. 3. The acyclic graphs derived from the training set shown on Fig. 2

Graph Machines and Their Applications to Computer-Aided Drug Design 7

Similarly, one has, for graphGy: ;¢ (Xl,xz,...,xg) =26, (1+9+¢92 +93) =8, and,
for graph Gy: g, ¢ (x X ..,xg) =0, (1 +40 +36° +03) =9,

1° 2%
Learning the number of cycles in a graph: similarly, consider learning, from
examples, the number of cycles in a graph.

By contrast to the previous example, the presence or absence of edges is highly
relevant, so that each node must be labeled by its degree: X; = X; = X3 = 1. Therefore,
one has D=max M, +2=5.

D-1

fo is sought in the family of affine functions fq (Z) = Z 9/.21. , and the root node is
Jj=0

assigned a different affine function Fy (yi). Therefore, the size of vectors y; is

max A4, +1=7, because the present problem requires an additional label, equal to I,

for the root nodes.

An obvious solution to the problem is the following: 6 = -1, 6, = 6 = 6 = 1,
6,=1/2, y=-1,60,=6,= 6= 0,=1, O = 1/2, O = 1; the additional label as-
signed to the root node is equal to 1.

Consider graph G: fo(z:1) = fo(2,) = fo(z3) = -1/2,

Y, :(1 -1/2 -1/2 -1/2 0 3 l)T, so that: Fg(y)) =-1-3/2+3/2+1=0,
as expected.

Similarly, for graph Gs, one has: f3(z1) = fo(Z2) = 0, fo(z4) = fo(ze) = 1/2, fo(z3) =
fo(zs) = 112, fo(z7) = fo(zg) = 172, y, :(1 /2 1/2 1/2 1/2 4 l)T,hence

Fe(ys) = 4.

2.5 Some Nonlinear Learning Tasks

The above two problems have linear solutions that can be obtained by inspection. In
general, graph regression or classification problems cannot be solved in the frame-
work of linear models, so that one has to resort to training, as described above. The
two examples described below are examples of graph machines being trained to learn
graph properties as in the previous section, but the solutions are not linear. A database
of 150 randomly generated graphs, featuring 2 to 15 nodes and O to 9 cycles, was cre-
ated. Model selection was performed by cross-validation.

Learning the diameter of a graph: the diameter of a graph is the length of the
shortest path between its most distant nodes:

D= max, | d(u,v), (6)

where d(u, v) is the distance (the length of the shortest path) between nodes u and v.
In the database under investigation, the index ranges from 1 to 9. That is clearly a
non-linear property; therefore, the node function was a neural network; model selec-
tion resulted in a neural network with four hidden neurons. The root mean square

8 A. Goulon, A. Duprat, and G. Dreyfus

error on the training set is 0.36, and the root mean square validation error (10-fold
cross-validation) is 0.53. Since the index is an integer ranging from 1 to 9, the predic-
tion is excellent given the complexity of the graphs.

Learning the Wiener index of a graph: the Wiener index of a graph G is the sum of
the distances between its vertices. That index was first defined by H. Wiener [7], in
order to investigate the relationships between the structure of chemicals and their
properties. It is defined as:

1
W(G)=f£§5d0hv).)

In our database, that index ranges from 1 to 426.

Model selection by 10-fold cross-validation resulted in a 4-hidden neuron node
function, leading to a RMS validation error of 7.9. The scatter plot is shown on Fig. 4,
illustrating the accuracy of the results obtained by training without having to compute
any feature for describing the graph structure. The problem of feature design and
selection, which is central in conventional machine learning with vector machines, is
irrelevant for graph machines. This is very important for the applications described
below.

2.6 Model Selection

Similarly to vector machines, usual model selection techniques such as hold-out, K-
fold cross-validation, leave-one-out, can be applied to recursive networks and to
graph machines. In the present section, we show how virtual leave-one-out, a power-
ful method for estimating the generalization capability of a vector machine, can be
extended to graph machines.

450
400/
350
3004
2501
2001
150
100
50 |

Estimated Wiener index

0 50 100 150 200 250 300 350 400 450
Wiener index

Fig. 4. Learning the Wiener index of graphs

Graph Machines and Their Applications to Computer-Aided Drug Design 9

Virtual leave-one-out for vector machines: leave-one-out is known to provide an
unbiased estimation of the generalization error of a model [8]. However, it is very
demanding in terms of computation time: it involves training N different models,
where N is the number of examples; each model is trained from N — 1 examples, and
the modeling error on the left-out example is computed; the estimator of the
generalization error is

®)

where Ri’i is the modeling error on example i when the latter is left out of the training

set.

Virtual leave-one-out is a very effective method for obtaining an approximation of
the above estimate [9], [10]. It consists in training the candidate model with all exam-
ples, and computing the virtual leave-one-out score as:

€))

where R; is the modeling error on example i when the latter is in the training set. &;; is
the tangent-plane leverage of example i: it is the i-th diagonal element of the hat
matrix:

H-= Z(ZTZ)A 7. (10)

Z is the Jacobian matrix of the model, i.e. the matrix whose columns are the values of
the partial derivative of the model gg(x) with respect to its parameters, for the exam-
ples of the training set:

., = %) (x) 11
i~ To0, | (i
J X:X,.

For models that are linear in their parameters, relation (9) is exact: it is known as
the PRESS (Predicted REsidual Sum of Squares) statistics. For models that are not
linear in their parameters, such as neural networks, it is a first-order approximation of
the estimator.

Leverages have the following properties:

O<@<1
N
Dh=q
i=1

where ¢ is the number of parameters of the model. Therefore, the leverage of example
i can be viewed as the proportion of the parameters of the model that is devoted to

12)

10 A. Goulon, A. Duprat, and G. Dreyfus

fitting example i. If &; is on the order of 1, the model has devoted a large fraction of
its parameters to fitting example i, so that the model is probably strongly overfitted to
that example. Therefore, virtual leave-one-out is a powerful tool for overfitting detec-
tion and model selection.

Virtual leave-one-out for graph machines: in the present section, we show how
virtual leave-one-out can be extended to graph machines. We give a simplified proof
of the result, which provides a flavor of the full derivation. For simplicity, consider a
model with a single parameter € ; moreover, assume that, for all graph machines, the
node function of the root node is identical to the node function of non-root nodes

fo(x). We denote by y; the measured value of the property of interest for example j:
the modeling error on example j is R, = ylf; - g;; we denote by R;i the modeling
error on example j when example i has been withdrawn from the training set:
R;i = ylf; - g;r ., where @ 'is the parameter computed from the training set from

which example i has been withdrawn. Therefore, one has:
R’ =Rj+g:—g;,,. (13)

Assuming that the withdrawal of example i from the training set does not affect the
parameters of the model to a large extent, a first-order Taylor expansion of the model,
in parameter space, can be performed:

. - dg) .
gé,,:gé+¥(9 -0). (14)
Therefore, one has:
y 98y (i
R'=R-—2(67"-6). (15)

The first derivative of the model can similarly be expanded to:

_ %8 o —0). 16
0 "0 00 (67 -0) (16)

As defined above, the least squares cost function (without regularization terms), is
oo \2
J(0)=2(v -2) - (17)
i=1
which is minimum for @. Therefore, one has
aJ (6 g’
o:—():zR,ﬁ, (18)
0 ~ 0

and, similarly

Graph Machines and Their Applications to Computer-Aided Drug Design 11

. dgl,
0= =LK' F5 (19)

J#

where J” is the cost function after training with the dataset from which i was with-
drawn. Substituting relations (15) and (16) into relation (19) gives:

. . 2\2 .
dg’ dg’ Uog/ g’ .
0=YR —2-R =2—1Y = | YR —=C|67-0). (20)
~ /00 d0 i1 00 <00’ ()

The first term on the right-hand side is equal to zero. Neglecting the second deriva-
tives with respect to the squared first derivatives (the usual Levenberg-Marquardt ap-
proximation), one gets, to first order:

(67 ~6)=—— 99/_ . o
i U 0 J
Substituting into (15) with j = i, one obtains:
—i Ri
K= (22)
with:
i 2
92,
00
h =——F—. (23)

ii 2\2
g,
1%

J

The above relation is similar to relation (10), which, for a single-parameter model,

reduces to:
ag, (x) ’
00 i

hy=—
3"

J
X=X
j

(24)

Thus, virtual leave-one-out can provide an estimate of the generalization error of
graph machines, in much the same way as for conventional vector machines: the

12 A. Goulon, A. Duprat, and G. Dreyfus

i

= ﬁ plays exactly the same role as the Jacobian
J

92, (X)

006,
J

matrix whose general term is z,

matrix Z (of general term z, =[]) for conventional vector machines. In

the case of neural networks, it can easily be computed by backpropagating an error
equal to %2, after the completion of training.

3 Graph Machines for the Prediction of Properties and/or
Activities of Molecules

The prediction of the physico-chemical properties and pharmaceutical activities of
molecules is a critical task in the drug industry for shortening the development times
and costs. Typically, one synthesized molecule out of 10,000 becomes a commercial
drug, and the development time of a new drug is approximately 10 years. Therefore,
predicting the activity of a hitherto non-existent molecule may lead to tremendous
savings in terms of development time and cost. Hence, over the past few years,
QSPR/QSAR has become a major field of research in the chemical industry.

In a typical QSAR/QSPR scenario, a database of measured properties or activities
of molecules is available, and it is desired to infer, from those data, the prop-
erty/activity of molecules that have not yet been synthesized. Therefore, machine
learning is a natural context for solving such problems. Linear, polynomial, neural,
and SVM regression have been used extensively. For all such techniques, the design
and the selection of relevant features, for the prediction of a given activity, are a ma-
jor problem.

In the following, we show that graph machines solve that problem by exempting
the model designer from finding and computing elaborate features, because the struc-
ture of the molecule is embodied into the learning machine itself. We show that, for
the problems described here as well as for other problems, graph machines provide
predictions that are at least as good as (and generally better than) predictions made by
conventional machine learning, without the need for designing, computing and select-
ing features.

3.1 Encoding the Molecules

Molecules are usually described in databases in a representation called SMILES
(Simplified Molecular Input Line Entry System), which provides a description of the
graph structure of the molecule as a character string. In the applications described

here, the functions gé were generated from the SMILES files of the molecules by the

following procedure: the molecules, described by these files, were converted into
labeled graphs by the association of each non-hydrogen atom to a node, and each
bond to an edge. The nodes were also assigned labels describing the atoms they were
related to (e.g. their nature, their degree or stereoisomery ...). Then, the adjacency
matrices associated to those labeled graphs were generated. In the subsequent step,

Graph Machines and Their Applications to Computer-Aided Drug Design 13

the matrices were cast into a canonical form, by an algorithm that ranks the nodes ac-
cording to criteria such as their degree, the fact that they belong to a cycle... [6]. This
canonical form allowed the choice of the root nodes, and the conversion of the graphs
into directed acyclic graphs. Fig. 5 illustrates the processing of a molecule from its
SMILES representation into a directed acyclic graph.

Graph machines were then built for each graph of the data set; node functions
were feedforward neural networks with a single layer of hidden neurons whose com-
plexity (i.e. the number of neurons in the hidden layer) was controlled by cross-
validation. The graph machines were then trained, with the shared weight condition,
using the software package NeuroOne™', which computes the gradient of the cost
function by backpropagation and minimizes the cost function by the Levenberg-
Marquardt algorithm.

OH
Cl
OC1=C(Cl)C=CC=C1CC <——> /\©/

SMILES representation

Molecule

I

C 3 c3
Directed acyclic graph Graph representation (undirected and cyclic)

Fig. 5. Encoding a molecule into a graph machine

3.2 Predicting the Boiling Points of Halogenated Hydrocarbons

The volatility of halogenated hydrocarbons is an important property, because those
compounds are widely used in the industry, for example as solvents, anaesthetics,
blowing agents, and end up in the environment, where they can damage the ozone
layer or be greenhouse gases. The volatility of a molecule can be assessed by its boil-
ing point, a property measured only for a small proportion of possible halogenated
hydrocarbons.

We studied a data set of 543 haloalkanes, whose boiling points were previously
predicted by Multi Linear Regression (MLR) [11],[12]. This regression required the
computation of numerous molecular descriptors, including arithmetic descriptors,

! NeuroOne is a product of Netral S.A. (http://www.netral.com)

14 A. Goulon, A. Duprat, and G. Dreyfus

topological indices, geometrical indices, and counts of substructures and fragments.
The best feature subset was then selected, and generally included 6 or 7 descriptors.
To provide a comparison with the results obtained by this method, we used the same
training and test sets as Riicker et al. [12]. They feature 507 and 36 haloalkanes re-
spectively, whose boiling points range from -128 °C to 249 °C.

In order to select the number of neurons required by the complexity of the prob-
lem, we first performed 10-fold cross-validation on the 507 examples of the training
set. The results suggested the use of neural networks with 4 hidden neurons.

We then trained the selected graph machines, and predicted the boiling points of the
test set molecules. The results of this study are shown in Table 1, where they are com-
pared to the results obtained by Riicker et al. [12] on the same sets, using a 7-regressor
MLR model. The predictions of the model on the test set are also displayed on Fig. 6.

Table 1. Prediction of the boiling points of haloalkanes by multi-linear regression and graph
machines

MLR (7-descriptor) 4N-GM
RMSE (°C) R? RMSE (°C) R?
Training 6.607 0.9888 3.92 0.9960
10-fold CV - - 4.70 0.9942
Test 7.44 0.9859 5.07 0.9921

200 .
S RMSE = 5.07 °C
ot R2=0.9921
S 150
o
[=)]
k=
= 100
el
©
QO
S 50
pe]
o
o
0 - : . .
0 50 100 150 200

Measured boiling point (°C)

Fig. 6. Scatter plot for the prediction of the boiling point of 36 haloalkanes

Graph Machines and Their Applications to Computer-Aided Drug Design 15

The above results show that graph machines are able to model the boiling points of
haloalkanes very well, without requiring the computation of any descriptor. Further-
more, this modeling task illustrates the fact that the design of the learning machine
from the structure of the molecules avoids the loss of information caused by the selec-
tion of descriptors. Actually, Riicker et al. [12] stress the fact that the prediction of the
boiling points of fluoroalkanes with their model is not satisfactory, which is presuma-
bly due to the lack of a descriptor taking into account the strong dipole interactions.
The removal of 7 of these compounds decreased the training error of MLR regression
by 0.56 °C (from 6.607 to 6.049 °C). By contrast, in the case of graph machines, the
errors on those examples are not particularly high, and their removal from the data-
base decreased the training error by 0.08 °C only (from 3.92 to 3.84 °C).

3.3 Predicting the Anti-HIV Activity of TIBO Derivatives

TIBO (Tetrahydroimidazobenzodiazepinone) derivatives are a family of chemicals
with a potential anti-HIV activity. They belong to the category of non-nucleoside
inhibitors, which block the reverse transcriptase of the retrovirus and prevent its du-
plication. We studied a data set of 73 of those compounds, whose activity was previ-
ously modeled with several QSAR methods, including conventional neural networks
[13], multi-linear regression [14], comparative molecular field analysis (CoMFA)
[15], and the substructural molecular fragments (SMF) method [16]. The latter ap-
proach is based on the representation of the molecules with graphs, which are split
into fragments, whose contribution to the modeled activity is then computed by linear
or non-linear regression. Those fragments are either atom-bond sequences, or "aug-
mented atoms", defined as atoms with their nearest neighbours.

In order to compare the prediction abilities of graph machines to the performances
of the SMF method [16], the data set was split into a training and a test set of 66 and 7
examples respectively, exactly as in [16]. The activity is expressed as log(1/ICs),
where ICs is the concentration leading to the inhibition of 50% of the HIV-1 reverse
transcriptase enzyme. Since some compounds of the set are stereoisomers, a label that
described the enantiomery (R or S) of the atoms was added when necessary.

We first performed 6-fold cross-validation on the training set with node functions
having up to five hidden neurons to select the complexity of the model. Three hidden
neurons provided the best cross-validation estimate of the generalization. The results
obtained with this model are reported in Table 2 and on Fig. 7.

Table 2. Prediction of the activity of TIBO derivatives by different methods

SMF 3N GM
RMSE R? RMSE R?

Training set 0.89 0.854 0.28 0.9901

Test set 0.51 0.943 0.45 0.9255

16 A. Goulon, A. Duprat, and G. Dreyfus

Since the accuracies of the experimental values are not known, the prediction er-
rors cannot be compared to the measurement errors. However, this study demonstrates
again that graph machines compare favourably with other methods, without the re-
quirement of computing descriptors. This task also illustrates another advantage of
graph machines on some other methods: Solov'ev et al. [16] had to remove several
compounds from their original set because they contained "rare" fragments, whereas
this problem does not occur with graph machines, insofar as the molecules of the test
set do not require labels (atom types or degrees for example) that are not present in
the training set.

Additional results on the prediction of the toxicity of phenols, the anti-HIV activity
of HEPT analogues, and the carcinogenicity of molecules, are described in [17].

9
x Training set X

- + Test set %%kk. x X
2z et x
=7 x, X
& * gg(xﬁ@‘?(
86
% s Jx
- w%¥

’ e
.
4 . Ky 5
.
3 f
3 4 5 6 7 8 9

Measured activity

Fig. 7. Scatter plot of the prediction of the activity of TIBO derivatives

4 Graph Machines for Classification: Discriminating Aromatic
From Non-aromatic Molecules

All the above examples are regression problems, in which a mapping is performed
from graphs to real numbers. Graph machines can also perform classification, i.e.
mappings from graphs to {-1, +1}. As an illustration, we show that discrimination
between aromatic molecules (i.e. molecules that contain an aromatic cycle) and non-
aromatic molecules can be performed. A cycle is aromatic when it fulfils several cri-
teria: it must be planar, and have a set of conjugated m orbitals, thereby creating a
delocalized © molecular orbital system. Furthermore, there must be 4n + 2 electrons in
this system, where » is an integer.

Graph Machines and Their Applications to Computer-Aided Drug Design 17

A set of 321 molecules was investigated, with various functional groups taken
from [18]; it was divided into a training and a test set of 274 and 47 examples respec-
tively. The proportion of molecules containing at least one aromatic cycle is shown on
Fig. 8.

To select the number of hidden neurons required by this problem, 10-fold cross-
validation was performed on the set of 273 examples. Table 3 reports the percentage
of correct classification obtained with three and four hidden neurons.

The cross-validation error with the graph machines with 4 hidden neurons is due to
a single misclassified example: the pipamperone, shown on Fig. 9. That error can be
traced to the fact that the main part of the molecule is non-aromatic.

100%
80% |
60% |
40% |
20% |

0%

= Aromatics
mNon-aromatics

Training set Test set

Fig. 8. Distribution of the molecules including at least one aromatic cycle in the data sets

Table 3. 10-fold cross-validation results for the prediction of the aromaticity

Correct classification Correct classification
(training) (10-fold CV)
GM 3N 100% 100%
GM 4N 100% 99.7%
HoN
0]

F

Fig. 9. Structure of the pipamperone, misclassified with 10-fold cross-validation

No example from the test set was misclassified by the graph machines with 3 hid-
den neurons, which illustrates the ability of graph machines to efficiently encode the
structures of the graphs, thus to retain structure-related properties such as aromaticity.

18 A. Goulon, A. Duprat, and G. Dreyfus

5 Conclusions

A computational method that allows regression and classification on graphs has been
described. Interestingly, it illustrates two principles that turn out to be very useful for
solving real-life machine-learning tasks: (i) if a representation of the data for a given
problem cannot be found “by hand”, it may be advantageous to learn it; (ii) always
embed as much prior information as possible into the structure of the learning ma-
chine. In agreement with statement (i), a representation of the graph evolves during
training, as described in [5]; in agreement with statement (ii), the information about
the structure of the data is embedded in the structure of the graph machine itself.

Model selection for recursive networks and graph machines used to be performed
by conventional cross-validation, hold-out or leave-one-out; we have shown, in the
present paper, that the powerful technique of virtual leave-one-out extends to recur-
sive networks or graph machines in a relatively straightforward fashion; the full deri-
vation of the results, and illustrations, will be provided in a forthcoming paper.

Applications of graph machines to computer-aided drug design have been de-
scribed. The major asset of graph machines is their ability to make efficient predic-
tions while exempting the model designer from the design, computation and selection
of descriptors, which is recognized to be a major burden in QSAR/QSPR tasks. It
should be noted, however, that, if the graph structure of the molecule is not sufficient
for accurate prediction, descriptors could indeed be implemented as inputs to graph
machines, in the form of labels for the nodes.

Scalability is an issue that should be investigated in a principled way. If the method
is to be used for scene or text analysis for instance, very large corpuses must be han-
dled. Experimental planning methods, allowing the model designer to use only the
most informative data, have recently become available for nonlinear models in con-
ventional machine learning. The extension of those techniques to graph machines
should be investigated.

References

1. Pollack, J.B.: Recursive Distributed Representations. Artificial Intell. 46 (1990) 77-106.

2. Sperduti, A.: Encoding Labeled Graphs by Labeling RAAM. Connection Science 6 (1994)
429-459.

3. Frasconi, P., Gori, M, Sperduti, A: A General Framework for Adaptive Processing of Data
Structures. IEEE Trans. on Neural Networks 9 (1998) 768-786.

4. Goulon-Sigwalt-Abram, A., Duprat, A., Dreyfus, G.: From Hopfield Nets to Recursive
Networks to Graph Machines: Numerical Machine Learning for Structured Data. Th.
Comp. Sci. 344 (2005) 298-334.

5. Hammer, B.: Recurrent Networks for Structured Data - a Unifying Approach and its Prop-
erties. Cognitive Systems Res. 3 (2002) 145-165.

6. Jochum, C., Gasteiger, J.: Canonical Numbering and Constitutional Symmetry. J. Chem.
Inf. Comput. Sci. 17 (1977) 113-117.

7. Wiener, H.: Structural Determination of Paraffin Boiling Point. J. Amer. Chem. Soc. 69
(1947) 17-20.

8. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag (2000).

9. Monari, G., Dreyfus, G.: Local Overfitting Control via Leverages. Neural Computation 14
(2002) 1481-1506.

10.

18.

Graph Machines and Their Applications to Computer-Aided Drug Design 19

Oussar, Y., Monari, G., Dreyfus G.: Reply to the Comments on "Local Overfitting Control
via Leverages" in "Jacobian Conditioning Analysis for Model Validation" by I. Rivals and
L. Personnaz. Neural Computation 16 (2004) 419-443.

. Balaban, A.T., Basak S.C., Colburn, T., Grunwald, G.D.: Correlation between Structure

and Normal Boiling Points of Haloalkanes C1-C4 Using Neural Networks. J. Chem. Inf.
Comput. Sci. 34 (1994) 1118-1121.

. Riicker, C., Meringer, M., Kerber, A.: QSPR Using MOLGEN-QSPR: The Example of

Haloalkane Boiling Points. J. Chem. Inf. Comput. Sci. 44 (2004) 2070-2076.

. Douali, L., Villemin, D., Cherqaoui, D.: Exploring QSAR of Non-Nucleoside Reverse

Transcriptase Inhibitors by Neural Networks: TIBO Derivatives. Int. J. Mol. Sci. 5 (2004)
48-55.

. Huuskonen, J.: QSAR modeling with the electrotopological state: TIBO derivatives. J.

Chem. Inf. Comput. Sci. 41 (2001) 425-429.

. Zhou, Z., Madura, J.D.: CoOMFA 3D-QSAR Analysis of HIV-1 RT Nonnucleoside Inhibi-

tors, TIBO Derivatives Based on Docking Conformation and Alignment. J. Chem. Inf.
Comput. Sci. 44 (2004) 2167-2178.

. Solov’ev, V. P., Varnek, A.: Anti-HIV Activity of HEPT, TIBO, and Cyclic Urea Deriva-

tives: Structure-Property Studies, Focused Combinatorial Library Generation, and Hits Se-
lection Using Substructural Molecular Fragments Method. J. Chem. Inf. Comput. Sci. 43
(2003) 1703-1719.

. Goulon, A., Picot, T., Duprat, A., Dreyfus, G.: Predicting Activities without Computing

Descriptors: Graph Machines for QSAR. Submitted to SAR and QSAR in Environmental
Research.

Duprat, A.F., Huynh, T., Dreyfus, G.: Toward a Principled Methodology for Neural Net-
work Design and Performance Evaluation in QSAR. Application to the Prediction of
LogP. J. Chem. Inf. Comput. Sci. 38 (1998) 586-594.

Rational Models of Cognitive Control

Michael C. Mozer

Department of Computer Science and
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309 USA
mozer@colorado.edu
http://www.cs.colorado.edu/ "mozer

1 Cognitive Control

Human behavior is remarkably flexible. An individual who drives the same route
to work each day easily adjusts for a traffic jam or to pick up lunch. Any theory
of human cognition must explain not only routine behavior, but how behavior
is flexibly modulated by the current environment and goals. In this extended
abstract, we discuss this ability, often referred to as cognitive control.

In a psychological laboratory, a task that has been used to study cognitive
control is the Stroop phenomenon. Individuals are asked to name the color in
which a list of words is printed. This task is straightforward, unless the to-
be-ignored words are color names, such as the word yellow printed in red ink.
The correct response is “red,” but individuals are inclined to respond “yellow.”
The explanation for this phenomenon is straightforward: individuals have much
practice reading words but have little practice in naming colors. As a result,
word reading is more automatic than color naming. What is particularly inter-
esting about this phenomenon is that individuals can override the predominant
response—reading the word—and produce the task-relevant response—naming
the color.

Cognitive control is required whenever an individual performs novel activities,
either because the task is novel or because the stimuli, responses, or task envi-
ronment is unfamiliar. Aspects of cognitive control include: the deployment of
visual attention, the selection of responses, the construction of arbitrary associ-
ations between stimuli and responses, the determination of which brain systems
should process a stimulus, and the use of working memory to subserve ongoing
processing. The functional organization of the brain, sometimes referred to as
the cognitive architecture, is extremely flexible. The role of cognitive control is
to reconfigure this general-purpose architecture to perform a specific task. But
cognitive control involves a secondary, more subtle, ability—that of fine tuning
the operation of the cognitive architecture to the environment. For example,
consider searching for a key in a bowl of coins versus searching for a key on a
black leather couch. In the former case, the environment dictates that the most
relevant feature is the size or shape of the key, whereas in the latter case, the
most relevant feature is the metallic luster of the key.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 20-25, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Rational Models of Cognitive Control 21

2 Sequential Dependencies

The fine tuning of cognitive control to the structure of the environment is evi-
denced by sequential dependencies in human behavior. A sequential dependency
is an influence of one incidental experience on subsequent experience. Sequen-
tial dependencies arise constantly in naturalistic settings. Individuals tend to
perform the same activities repeatedly throughout their daily lives: driving to
the office, preparing dinner, arguing with a spouse, searching for information
on the web, etc. Sequential dependencies are also studied in a constrained en-
vironment via psychological experiments that require individuals to perform a
task repeatedly or perform a series of tasks, and performing one task trial influ-
ences behavior on subsequent trials. Measures of behavior are diverse, including
response latency, accuracy, type of errors produced, and interpretation of am-
biguous stimuli.

What is the relationship between cognitive control and sequential dependen-
cies? Sequential dependencies are a reflection of the effects of control processes.
That is, cognitive control modulates information processing and internal rep-
resentations, these modulations yield sequential dependencies. As a result, un-
derstanding sequential dependencies—fine tuning of behavior that follows each
experience—should offer an insight into the operation of cognitive control—the
tuning required to achieve flexible, adaptive behavior.

To illustrate a sequential dependency, consider the three columns of addition
problems in Table 1. The first column is a list of easy problems; individuals
are quick and accurate in naming the sum. The second column is a list of hard
problems; individuals are slower and less accurate in responding. The third col-
umn contains a mixture of easy and hard problems. If sequential dependencies
arise in repeatedly naming the sums, then the response time or accuracy to an
easy problem will depend on the preceding context, i.e., whether it appears in
an easy or mixed list; similarly, performance on a hard problem will depend on
whether it appears in a hard or mixed list. Exactly this sort of dependency has
been observed [4]: responses to a hard problem are faster but less accurate in a
mixed list than in a pure list; similarly, responses to an easy problem are slower
and more accurate in a mixed list than in a pure list of easy trials. Essentially,
the presence of recent easy problems causes response-initiation processes to treat
a hard problem as if it were easier, speeding up responses but causing them to be

Table 1. Three Series of Addition Problems

Easy List Hard List Mixed List

3+2 9+4 3+ 2
1+4 7+ 6 7+ 6
10+ 7 8+ 6 10+ 7
5+ 5 6+ 13 6+ 13

22 M.C. Mozer

more error prone; the reverse effect occurs for easy problems in the presence of
recent hard problems.

Sequential dependencies reflect cortical adaptation operating on the time scale
of seconds, not—as one usually imagines when discussing learning—days or
weeks. Sequential dependencies are robust and nearly ubiquitous across a wide
range of experimental tasks, spanning all components of the cognitive architec-
ture, including perception, attention, language, stimulus-response mapping, and
response initiation [8]. Sequential dependencies arise in a variety of experimental
paradigms. The aspect of the stimulus that produces the dependency ranges from
the concrete, such as color or identity, to the abstract, such as cue validity, item
difficulty, or syntax of language. Most sequential dependencies are fairly short
lived, lasting roughly five intervening trials, but some varieties span hundreds of
trials and weeks of passing time.

3 Rational Models of Cognition

We have proposed and evaluated a variety of cognitive models to explain se-
quential dependencies. A cognitive model captures essential aspects of cognitive
function, matches human strengths and weaknesses, and can replicate patterns
of data observed in human experimental studies. In contrast to Artificial Intel-
ligence systems, cognitive models attempt to perform perceptual and cognitive
tasks in the same way that people do.

We focus on a subclass of cognitive models that adopt a rational perspective
[1], which views cognition as being optimized with respect to current goals and
the statistical structure of the environment. Rational analysis has been used to
understand many cognitive domains, including long-term memory [1], concept
learning [9], language learning [2] [10], and low-level perceptual integration [11].
A rational account of some cognitive process does not imply the rationality of
human reasoning and decision making, which is built upon many elemental cog-
nitive processes, nor does a rational account imply that the cognitive process
is ideal in an absolute sense. The notion of rationality is considered in light
of limitations on processing hardware or knowledge state. In a successful ra-
tional account, a small set of assumptions concerning hardware and knowledge
limitations, along with the assumption of rationality (i.e., that inference and per-
formance is optimal subject to these limitations), leads to parsimonious, elegant
accounts of data and strong predictions.

From a behavioral perspective, the natural goal of optimization is to make
performance more fluid and efficient—concretely, to minimize reaction time or to
maximize accuracy, or some trade-off between the two. A rational model must be
sensitive to the statistical structure of the environment in which it is operating,
because the structure of the environment can be exploited to make behavior
more efficient. Optimality of behavior is possible only when the probabilities
of various environmental states and outcomes can be estimated. As a result,
rational models tend to adopt a probabilistic framework.

Rational Models of Cognitive Control 23

4 Domains Studied

We have constructed rational models to understand cognition and predict be-
havior across a range of tasks. We briefly summarize specific models that we
have investigated, to perform the following tasks: visual search (locating a visual
target in a cluttered display), categorization (labeling an item as belonging to
one of a discrete set of classes), and speeded discrimination (making a rapid de-
cision to a visual stimulus). In all three models, we account for behavior via the
assumption that a predictive model of the environment is learned and updated
over the course of experience, and control processes use this model to optimze
future performance.

4.1 Sequential Effects Involving Visual Search

In a visual search task, individuals are asked to locate a target item in a clut-
tered display of distractor items, such as finding a red circle among green circles
and red squares. Visual search shows strong sequential effects. The robust find-
ing is that repetition of features of recent trials (e.g., target color) facilitates
performance.

We view this facilitation as an adaptation to the statistical structure of the en-
vironment [6]. We suggest that control processes construct a probabilistic model
of the environment that is updated after each trial to reflect the current trial. At-
tentional control then operates so as to optimize performance for the more likely
states of the environment. For example, if a target appeared in the center of a
display for several trials in a row, then an environmental models would predict
that with high probability, the target will appear in the center again, and will
tune visual search to be particularly efficient for a target in the center. We cast
the environment model as a Bayes net, and make strong claims about how task
instructions determine the structure (conditional dependencies) of the Bayes net.
We obtain parsimonious explanations for data from four different experiments.
Further, our model provides a rational explanation for why the influence of past
experience decays so rapidly—in under a half dozen trials.

4.2 Sequential Effects Involving Categorization

Categorization is a central activity of human cognition. Individuals continually
make decisions about characteristics of objects and other individuals: Is the fruit
ripe? Does your friend seem unhappy? Is your car tire flat?

When an individual is asked to categorize a series of items, sequential effects
arise: categorization of one item influences category decisions for subsequent
items. Specifically, when experimental subjects are shown an exemplar of some
target category, the category prototype appears to be pulled toward the exem-
plar, and the prototypes of all nontarget categories appear to be pushed away.
These push and pull effects diminish with experience, and likely reflect long-term
learning of category boundaries.

We propose a model to explain categorization phenomena that assumes the
objective of category learning is to maximize the posterior probability of the

24 M.C. Mozer

category given the exemplar [7]. Each category is encoded as a Gaussian density
in feature space, and categorization involves computing category posteriors given
an exemplar. Also essential to a complete account of the experimental data is an
assumption of prior knowledge of category structure. Specifically, if the categories
lie on a continuum (e.g., “small”, “medium”, and “large”), the structure built
into the model includes ordinal information about the categories.

4.3 Sequential Effects Involving Speeded Discrimination

Consider a simple speeded discrimination task in which individuals are asked to
classify a sequence of stimuli [3]. The stimuli are letters of the alphabet, A-Z,
presented in rapid succession, and individuals are asked to press one response
key if the letter is an X or another response key for any letter other than X (as a
shorthand, we will refer to the alternative responses as X and Y). Even in a simple
cognitive task like this, sequential effects arise from the relative frequency of X
and Y. Response conflict arises when the two stimulus classes are unbalanced in
frequency, resulting in more errors and slower reaction times. For example, when
X’s are frequent but Y is presented, individuals are predisposed toward producing
X, and this predisposition must be overcome by the perceptual evidence from
Y. Cognitive control is presumed to be required in situations involving response
conflict.

How do control processes modulate behavior based on the relative class fre-
quencies? We explain performance from a rational perspective that casts the
goal of individuals as minimizing a cost that depends both on error rate and re-
action time [5]. With two additional assumptions of rationality—that class prior
probabilities are accurately estimated and that inference is optimal subject to
limitations on rate of information transmission—we obtain a good fit to overall
RT and error data, as well as trial-by-trial variations in performance.

5 Conclusions

Theories in cognitive science often hand the problem of cognitive control to an
unspecified homunculus. Other theories consider cognitive control in terms of
a central, unitary component of the cognitive architecture whose role is to di-
rect processing in lower components of the architecture. In contrast, we view
cognitive control as a collection of simple, specialized mechanisms, and the ap-
pearance of control emerges from this collection. We summarized three such
mechanisms in this abstract: one that determines how to allocate attention and
visual processing resources, one that determines where to draw boundaries in
dividing our continuous world into discrete categories, and one that determines
the predisposition to produce specific responses.

The central claim of all of our accounts is that a predictive model of the
environment is constructed, and this model is used to optimize performance
on subsequent trials. We view sequential dependencies as reflecting continual
adaptation to the ongoing stream of experience, wherein each sensory and mo-
tor experience can affect subsequent behavior. Sequential dependencies suggest

Rational Models of Cognitive Control 25

that learning should be understood not only in terms of changes that occur on
the time scale of hours or days, but also in terms of changes that occur from
individual incidental experiences that occur on the scale of seconds.

References

10.

11.

. Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erl-

baum.

Brent, M. R., (1999). Speech segmentation and word discovery: A computational
perspective. Trends in Cognitive Science, 3, 294-301.

Jones, A. D., Cho, R. Y., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002).A
computational model of anterior cingulate function in speeded response tasks: Ef-
fects of frequency, sequence, and conflict. Cognitive, Affective, & Behavioral Neu-
roscience, 2, 300-317.

. Lupker, S. J., Kinoshita, S., Coltheart, M., & Taylor, T. (2003). Mixing costs

and mixing benefits in naming words, pictures, and sums. Journal of Memory and
Language, 49, 556-575.

Mozer, M. C., Colagrosso, M. D., & Huber, D. H. (2002). A rational analysis of
cognitive control in a speeded discrimination task. In T. Dietterich, S. Becker, &
Ghahramani, Z. (Eds.) Advances in Neural Information Processing Systems XIV
(pp. 51-57). Cambridge, MA: MIT Press.

Mozer, M. C., Shettel, M., & Vecera, S. P. (2006). Control of visual attention: A
rational account. In Y. Weiss, B. Schoelkopf, & J. Platt (Eds.), Neural Information
Processing Systems 18 (pp. 923-930). Cambridge, MA: MIT Press.

Mozer, M. C., Jones, M., & Shettel, M. (2006). Context effects in categorization:
An investigation of four probabilistic models. Submitted for publication.

Mozer, M. C., Kinoshita, S., & Shettel, M. (2006). Sequential dependencies offer
insight into cognitive control. In W. Gray (Ed.), Integrated Models of Cognitive
Systems. Oxford University Press.

Tenenbaum, J. (1999). Bayesian modeling of human concept learning. In M. S.
Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in Neural Information Process-
ing Systems 11. Cambridge, MA: MIT Press.

Tenenbaum, J. B. & Xu, F. (2000). Word learning as Bayesian inference. In L.
Gleitman and A. Joshi (eds.), Proceedings of the 22nd Annual Conference of the
Cognitive Science Society (pp. 517-522). Hillsdale, NJ: Erlbaum.

Weiss, Y., & Adelson, E. H. (1998). Slow and smooth: A Bayesian theory for the
combination of local motion signals in human vision. MIT AI Memo 1624 (CBCL
Paper 158). Cambridge, MA: Department of Brain and Cognitive Sciences, Massa-
chusetts Institute of Technology.

Fault-Tolerance in Biochemical Systems
(Abstract)

Erik Winfree

Computer Science and Computation & Neural Systems
California Institute of Technology
Pasadena, CA 91125, USA

Biochemistry is messy. It’s a miracle any of it works. And yet it does. The
wonderful diversity and amazing talents of living things derive from the bio-
chemical processes that copy genetic information and use that information as
a program to construct a sophisticated organization of matter and behaviour
— reliably and robustly overcoming insult after insult from the environment. In
this talk T will first discuss how known techniques for fault-tolerant computing,
such as von Neumann’s multiplexing technique for digital circuits, can be trans-
lated to the biochemical context. I will then discuss fault-tolerance in molecular
self-assembly, which requires new techniques. Using a model of algorithmic self-
assembly, a generalization of crystal growth processes, I will present techniques
for controlling the nucleation of self-assembly, for reducing errors during growth,
and for recovering after gross damage or fragmentation.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, p. 26, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optical Computing and
Computational Complexity

Damien Woods

Boole Centre for Research in Informatics
School of Mathematics
University College Cork

Ireland
http://www.bcri.ucc.ie/~dwb
d.woods@bcri.ucc.ie

Abstract. This work concerns the computational complexity of a model
of computation that is inspired by optical computers. The model is called
the continuous space machine and operates in discrete timesteps over a
number of two-dimensional images of fixed size and arbitrary spatial res-
olution. The (constant time) operations on images include Fourier trans-
formation, multiplication, addition, thresholding, copying and scaling.
We survey some of the work to date on the continuous space machine.
This includes a characterisation of the power of an important discrete
restriction of the model. Parallel time corresponds, within a polynomial,
to sequential space on Turing machines, thus satisfying the parallel com-
putation thesis. A characterisation of the complexity class NC in terms
of the model is also given. Thus the model has computational power that
is (polynomially) equivalent to that of many well-known parallel models.
Such characterisations give a method to translate parallel algorithms to
optical algorithms and facilitate the application of the complexity the-
ory toolbox to optical computers. In the present work we improve on
these results. Specifically we tighten a lower bound and present some
new resource trade-offs.

1 Introduction

Over the years, optical computers were designed and built to emulate conven-
tional microprocessors (digital optical computing), and for image processing over
continuous wavefronts (analog optical computing). Here we are interested in the
latter class: optical computers that store data as images. Numerous physical
implementations exist and example applications include fast pattern recognition
and matrix-vector algebra [9,24]. There have been much resources devoted to
designs, implementations and algorithms for such optical information processing
architectures (for example see [1,4,6,9,12,13,14,15,22,24,31] and their references).
However the computational complexity theory of optical computers® has received

! That is, finding lower and upper bounds on computational power in terms of known
complexity classes.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 27-40, 2006.
© Springer-Verlag Berlin Heidelberg 2006

28 D. Woods

relatively little attention when compared with other nature-insired computing
paradigms. Some authors have even complained about the lack of suitable mod-
els [6,13].

We investigate the computational complexity of a model of computation
that is inspired by such optical computers. The model is relatively new and is
called the continuous space machine (CSM) [16,17,18,26,27,28,29,30]. The model
was originally proposed by Naughton [16,17]. The CSM computes in discrete
timesteps over a number of two-dimensional images of fixed size and arbitrary
spatial resolution. The data and program are stored as images. The (constant
time) operations on images include Fourier transformation, multiplication, addi-
tion, thresholding, copying and scaling. We analyse the model in terms of seven
complexity measures inspired by real-world resources.

Subsequent to the original [17] CSM definition, Naughton [16] showed that
the CSM (sequentially) simulates Turing machines, with a constant factor slow-
down in time, thus giving a lower bound on its computational power. Later it
was shown [18] that the model could simulate Type-2 Turing machines [25]. It
was also shown that the CSM definition was perhaps too general as there is an
w-language that is Type-2 (and Turing machine) undecidable, but is CSM de-
cidable [18], and furthermore any language is decided in finite time (and infinite
space) [30]. In this paper we mostly focus on computational complexity results
for a restricted CSM called the Co-CSM. Section 2 surveys some of the work to
date on the model. This includes an analysis of complexity resources relevant to
the CSM. Optical information processing is a highly parallel form of computing
and we have made this intuition more concrete by relating the Co-CSM to par-
allel complexity theory. We discuss characterisations of C2-CSM computational
power in terms of sequential space complexity classes and NC. Section 3 presents
a new result that improves the lower bound for Co-CSM simulation of sequential
space.

2 CSM and C,-CSM

We begin by describing the model in its most general sense, this brief overview
is not intended to be complete and more details are to be found in [26].

21 CSM

A complex-valued image (or simply, image) is a function f:[0,1) x [0,1) — C,
where [0, 1) is the half-open real unit interval. We let Z denote the set of complex-
valued images. Let Nt = {1,2,3,...}, N = N* U {0}, and for a given CSM M
let NV be a countable set of images that encode M’s addresses. Additionally, for a
given M there is an address encoding function € : N — N such that & is Turing
machine decidable, under some reasonable representation of images as words. An
address is an element of N x N.

Optical Computing and Computational Complexity 29

Definition 1 (CSM). A CSM is a quintuple M = (&, L, I, P,O), where
¢ : N — N is the address encoding function,
L = ((s¢, sy), (ae,an), (be,by)) are the addresses: sta, a and b, where a # b,
I and O are finite sets of input and output addresses, respectively,
P ={(C1,p1:p1,), -+ (CrsPres Pr,) } are the r programming symbols (; and
their addresses where (; € ({h,v,*,-,+, p, st,ld,br, hit} UN) C T.

Fach address is an element from {0, ..., 5 =1} x{0,...,Y—1} where 5,Y € NT.

Addresses whose contents are not specified by P in a CSM definition are assumed
to contain the constant image f(z,y) = 0. We interpret this definition to mean
that M is (initially) defined on a grid of images bounded by the constants =
and Y, in the horizontal and vertical directions respectively. The grid of images
may grow in size as the computation progresses.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0,0) is
located at the lower left-hand corner of the grid. The images have the same
orientation as the grid. For example the value f(0,0) is located at the lower
left-hand corner of the image f.

In Definition 1 the tuple P specifies the CSM program using programming
symbol images (; that are from the (low-level) CSM programing language [26,30].
We refrain from giving a description of this programming language and instead
describe a less cumbersome high-level language [26]. Figure 1 gives the basic
instructions of this high-level language. The copy instruction is illustrated in
Figure 3. There are also if/else and while control flow instructions with con-
ditions of the form (f, == f,) where fy and f, are binary symbol images (see
Figures 2(a) and 2(b)).

Address sta is the start location for the program so the programmer should
write the first program instruction at sta. Addresses a and b define special im-
ages that are frequently used by some program instructions. The function &
is specified by the programmer and is used to map addresses to image pairs.
This enables the programmer to choose her own address encoding scheme. We
typically don’t want & to hide complicated behaviour thus the computational
power of this function should be somewhat restricted. For example we put such
a restriction on & in Definition 7. Configurations are defined in a straightforward
way as a tuple (¢, e) where ¢ is an address called the control and e represents
the grid contents.

2.2 Complexity Measures

Next we define some CSM complexity measures. All resource bounding functions
map from N into N and are assumed to have the usual properties [2]. Logarithms
are to the base 2.

Definition 2. The TIME complexity of a CSM M is the number of configura-
tions in the computation sequence of M, beginning with the initial configuration
and ending with the first final configuration.

30 D. Woods

h(i1;82) : replace image at i2 with horizontal 1D Fourier transform of ;.
v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at 4.
*(i1302) : replace image at i2 with the complex conjugate of image at ;.

- (i1,i2;13) : pointwise multiply the two images at i1 and i2. Store result at 3.
+(i1,i2;33) : pointwise addition of the two images at i1 and i2. Store result at is.

p(i1,21,2u;i2) : filter the image at i1 by amplitude using 2z and z, as lower and upper
amplitude threshold images, respectively. Place result at i2.

[€1,&5,m1,m3] < [€1,&2,m1,m2] : copy the rectangle of images whose bottom left-hand
address is (£1,71) and whose top right-hand address is (£2,72) to the
rectangle of images whose bottom left-hand address is (£1,77) and whose
top right-hand address is (£3,753). See illustration in Figure 3.

Fig.1. CSM high-level programming language instructions. In these instructions
1,21,z € N X N are image addresses and &, € N. The control flow instructions are
described in the main text.

(a) (b) (c) (d) (e) ()

Fig. 2. Representing binary data. The shaded areas denote value 1 and the white areas
denote value 0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or
row) image representation of the word 1011, (d) column image representation of 1011,
(e) 3 x 4 matrix image, (e) binary stack image representation of 1101. Dashed lines are
for illustration purposes only.

Definition 3. The GRID complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : Z x (N xN) — Z, where S(f(x,y),(®,¥)) is a raster image, with ¢¥
constant-valued pixels arranged in @ columns and ¥ rows, that approximates
f(z,y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The SPATIALRES complezity of a CSM M is the minimum O¥
such that if each image f(x,y) in the computation of M is replaced with
S(f(z,y), (P,¥)) then M computes correctly on all inputs.

Definition 5. The DYRANGE complexity of a CSM M is the ceiling of the maz-
imum of all the amplitude values stored in all of M’s images during M ’s com-
putation.

We also use complexity measures called AMPLRES, PHASERES and FREQ [26,30].
Roughly speaking, the AMPLRES of a CSM M is the number of discrete, evenly
spaced, amplitude values per unit amplitude of the complex numbers in the range
of M’s images. The PHASERES of M is the total number (per 27) of discrete

Optical Computing and Computational Complexity 31

n —/ i
3 £+3 : }
|
|

Fig. 3. Illustration of the instruction ¢ «— [£,& + 3,7, 7n] that copies four images to a
single image that is denoted ¢

evenly spaced phase values in the range of M’s images. FREQ is a measure of the
optical frequency of M’s images [30].

Often we wish to make analogies between space on some well-known model
and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The SPACE complexity of a CSM M s the product of all of M’s
complexity measures except TIME.

2.3 Representing Data as Images

There are many ways to represent data as images. Here we mention some data
representations that are commonly used and moreover are used in Section 3.
Figures 2(a) and 2(b) are the binary symbol image representations of 1 and 0
respectively. These images have an everywhere constant value of 1 and 0 respec-
tively, and both have SPATIALRES of 1. The row and column image represen-
tations of the word 1011 are respectively given in Figures 2(c) and 2(d). These
row and column images both have SPATIALRES of 4. In the matrix image repre-
sentation in Figure 2(e), the first matrix element is represented at the top left
corner and elements are ordered in the usual matrix way. This 3 x 4 matrix image
has SPATIALRES of 12. Finally the binary stack image representation, which has
exponential SPATIALRES of 16, is given in Figure 2(f). Section 3.1 discusses the
manipulation of stack images.

Figure 3 shows how we might form a list image by copying four images to
one in a single timestep. All of the above mentioned images have DYRANGE,
AMPLRES and PHASERES of 1.

2.4 'Worst Case CSM Resource Usage

For the case of sequential computation it is usually obvious how the execution of a
single operation will effect resource usage. In parallel models, execution of a single
operation can lead to large growth in a single timestep. Characterising resource
growth is useful for proving upper bounds on power and choosing reasonable
model restrictions.

We investigated the growth of complexity resources over TIME, with respect to
CSM operations [26,28]. As expected, under certain operations some measures
do not grow at all. Others grow at rates comparable to massively parallel models.

32 D. Woods

Table 1. CSM resource usage after one timestep. For a given operation and complexity
measure pair, the relevant table entry defines the worst case CSM resource usage at
TIME T+ 1, in terms of the resources used at TIME T'. At TIME T" we have GRID = G,
SPATIALRES = Rs 71, AMPLRES = R, r, DYRANGE = Rp,7, PHASERES = Ry r and
FREQ = V.

GRID SPATIALRES AMPLRES DYRANGE PHASERES FREQ
h Gr 00 00 o) 00 00
v Gr %) %) 00 %) %)
* Gr Rs.1 Ry1 Ry Re 1 vr
- Gr Rs. 1 (Ra,1)? (Rp1)? Re 1 vr
+ Gr Rsr 00 2Ry, T 00 vr
p unbounded Rsr Ry1 Ry Re 1 v
st unbounded Rs 71 Ru 1 Ry, Re 7 vr
ld unbounded unbounded R, r Ry, Re 1 unbounded
br Gr RS,T RA,T RD,T RP,T vr
hlt Gr RS,T RA,T RD,T RP,T vr

By allowing operations like the Fourier transform we are mixing the continuous
and discrete worlds, hence some measures grow to infinity in one timestep. This
gave strong motivation for CSM restrictions.

Table 1 summarises these results; the table defines the value of a complexity
measure after execution of an operation (at TIME T + 1). The complexity of
a configuration at TIME T + 1 is at least the value it was at TIME T, since
complexity functions are nondecreasing. Our definition of TIME assigns unit time
cost to each operation, hence we do not have a TIME column. Some entries are
immediate from the complexity measure definitions, for others proofs are given
in the references [26,28].

2.5 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we defined [26,28] the C3-CSM, a restricted and more realistic class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation TIME is de-
fined for t € {1,2,...,T(n)} and has the following restrictions:

— For all TIME t both AMPLRES and PHASERES have constant value of 2.

— For all TIME ¢ each of GRID, SPATIALRES and DYRANGE is O(2") and SPACE
is redefined to be the product of all complexity measures except TIME and
FREQ.

— Operations h and v compute the discrete Fourier transform (DFT) in the
horizontal and vertical directions respectively.

— Given some reasonable binary word representation of the set of addresses N,
the address encoding function € : N — N is decidable by a logspace Turing
machine.

Optical Computing and Computational Complexity 33

Let us discuss these restrictions. The restrictions on AMPLRES and PHASERES
imply that C2-CSM images are of the form f : [0,1)x[0,1)— {0, :I:%,:I:l7 :I:;’, S
We have replaced the Fourier transform with the DFT [3], this essentially means
that FREQ is now solely dependent on SPATIALRES; hence FREQ is not an in-
teresting complexity measure for Co-CSMs and we do not analyse Co-CSMs in
terms of FREQ complexity [26,28]. Restricting the growth of SPACE is not unique
to our model, such restrictions are to be found elsewhere [8,19,21].

In Section 2.1 we stated that the address encoding function & should be
Turing machine decidable, here we strengthen this condition. At first glance
sequential logspace computability may perhaps seem like a strong restriction,
but in fact it is quite weak. From an optical implementation point of view it
should be the case that & is not complicated, otherwise we cannot assume fast
addressing. Other (sequential /parallel) models usually have a very restricted ‘ad-
dressing function’: in most cases it is simply the identity function on N. Without
an explicit or implicit restriction on the computational complexity of &, find-
ing non-trivial upper bounds on the power of Co-CSMs is impossible as € could
encode an arbitrarily complex halting Turing machine. As a weaker restriction
we could give a specific €. However, this restricts the generality of the model
and prohibits the programmer from developing novel, reasonable, addressing
schemes.

2.6 C3-CSM and Parallel Complexity Theory

We have given lower bounds on the computational power of the Co-CSM by
showing that it is at least as powerful as models that verify the parallel com-
putation thesis [26,29]. This thesis [5,7] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [10,11,19,23] for details. Let S(n) be a space bound that is 2(logn).
The languages accepted by nondeterministic Turing machines in S(n) space are
accepted by Ca-CSMs computing in TIME O(S*(n)).

Theorem 1 ([26,29]). NSPACE(S(n)) C C2-CSM-TIME(O(S*(n)))

For example polynomial TIME Co-CSMs accept the PSPACE languages. (Of
course any polynomial TIME Co-CSM algorithm that we could presently write
to solve PSPACE-complete or NP-complete problems would require exponen-
tial SPACE.) Theorem 1 is established via Co-CSM simulation of vector ma-
chines [2,20,21]. In the simulation the SPACE overhead is polynomial in vector
machine space. Using this fact we find that Co-CSMs that simultaneously use
polynomial SPACE and polylogarithmic TIME accept the class NC.

Corollary 1 ([26,29]). NC C C,-CSM-SPACE, TIME(n®(", 10g°™") n)

We have also given the other of the two inclusions that are necessary in order to
verify the parallel computation thesis; Co-CSMs computing in TIME T'(n) are no
more powerful than O(T?(n)) space bounded deterministic Turing machines.

34 D. Woods

Theorem 2 ([26,27]). Co-CSM-TIME(T'(n)) € DSPACE(O(T?(n)))

Via the proof of Theorem 2 we get another (stronger) result. Co-CSMs that simul-
taneously use polynomial SPACE and polylogarithmic TIME accept at most NC.

Corollary 2 ([26,27]). Co-CSM-SPACE, TIME(n®®) 10g®® n) € NC

The latter two inclusions are established via Co-CSM simulation by logspace uni-
form circuits of size and depth polynomial in SPACE and TIME respectively. Thus
C2-CSMs that simultaneously use both polynomial SPACE and polylogarithmic
TIME characterise NC.

It turns out that the Co-CSM simulation of sequential space can be made
more efficient. Theorem 3 in the next section improves the lower bound given
by Theorem 1.

3 Improved C,-CSM Lower Bound

In this section we improve the lower bound given by Theorem 1 by proving the
following result.

Theorem 3. NSPACE(S(n)) C C2-CSM-TIME(O(S5%(n)))

Moreover the GRID and DYRANGE complexities are both reduced from O(2%(™)
to O(1). However we see a trade-off here as the reduction in GRID and DYRANGE
is swapped for an increase? in SPATIALRES from O(2°(™)) to O(235() §3). Thus
the SPACE overhead in Theorem 3 has not decreased, nevertheless the trade-off is
interesting. Also the simulation is achieved® with AMPLRES of 1 and PHASERES
of 1. In summary, we have tightened the relationship between the Co-CSM and
sequential space:

Corollary 3
NSPACE(S(n)) C Co-CSM-TIME(O(S(n))?) € DSPACE(O(S(n))*)

We prove Theorem 3 by giving a Co-CSM that efficiently generates (Lemma 1)
and squares (Lemma 2) the transition matrix of a S(n)={2(log n) space bounded
Turing machine.

We assume that Turing machines have a single tape, use only binary tape
symbols {0, 1} and are nondeterministic. At each timesstep the tape head moves
either left (denoted L) or right (denoted R). The proofs below are sketched in
the sense that we refrain from giving explicit code.

2 On a technical note we are abusing notation here. Co-CSMs are defined to use
SPATIALRES O(2") after ¢ timesteps. To save the reader the burden of new notation
we overload the notation “Co-CSM” by using it to also describe machines that are
C2-CSMs except for the fact that they have a O(2°M?) upperbound on SPATIALRES.
Although we omit the details, we note that Theorem 2 and Corollary 2 still hold for
such (more general) definitions of Co-CSM.

3 This is in contrast to the proof of the previous lower bound proof [26,29] where
AMPLRES and PHASERES were both 2. Subtraction (via addition of negative numbers)
and devision by 2 (via multiplication by 1/2) are not needed in the present proof.

Optical Computing and Computational Complexity 35

3.1 Iteration

In order to bound iterative loops we use a ‘counter image’. In previous work
[26,29] we used an image with value/range of k (and thus of DYRANGE k) as a
counter for k iterations. At each iteration the counter image is decremented by 1
(by adding an image of value —1), and tested for equality with 0 (by addressing).

Here we are restricted to constant DYRANGE so a different approach is adopted.
Our counter image for value k is a unary stack image that represents 1. A unary
stack image is just like the binary stack illustrated in Figure 2(e) except that the
represented word is a list of ones. To access the i*? bit in a stack image we ‘pop’ the
stack 7 times. Popping involves spreading the stack over two horizontally adjacent
images, the leftmost image now contains the topmost stack element, the rightmost
image contains the remainder of the stack. Popping the stack in this way uses
GRID O(1) and TIME O(k) to pop the entire stack. After each pop we test if the
popped element is 0 by addressing, this happens only on pop k+1. The unary stack
image representation requires SPATIALRES of O(2%), and AMPLRES, PHASERES
and DYRANGE of 1.

In the sequel we simply write S(n) as S. In the proof of Lemma 1 below all
loops run for S or log S iterations. Thus their counter images have SPATIALRES
of O(2%), which is no more than the SPATIALRES of other parts of the algorithm.
A similar argument holds for Lemma 2.

3.2 Generating the Transition Matrix

The configuration graph of a space bounded Turing machine M is a graph with
exactly one node for each configuration of M. There is a path from node i
to node j iff configuration c; leads to configuration c; in exactly one step via
some transition rule of M (formally we write ¢; Fas ¢;). On input w, given the
pair of nodes corresponding to the (unique) initial and accepting configurations,
simulating the computation of M (w) is the same as asking if there is a path
from the initial node to the accepting node. We simulate M by computing the
reflexive transitive closure of the transition graph. To do this we represent the
graph by a binary matrix which we call the transition matrix of M. There is one
row (respectively column) for each node. Entry (7, 5) is 1 iff there is a path from
node i to node j. The reflexive transitive closure is computed by squaring the
matrix a number of times that is logarithmic in the number of nodes. Motivations
and further details are to be found in van Emde Boas’ survey [23].
We begin by constructing the binary transition matrix.

Lemma 1. Let M be a Turing machine that accepts L € {0,1}* in space S = 2¢
for some i € N. Then there is a Co-CSM that generates the transition ma-
triz of M in TIME O(S), SPATIALRES O(2295?), GriD O(1), bYRANGE O(1),
AMPLRES 1 and PHASERES 1.

Proof (sketch). Let @ be the states of M and t = (¢q,01,02,D, qy) be an ar-
bitrary transition rule of M, with initial state g., next state g,, read symbol
o1 € {0,1}, write symbol o5 € {0, 1}, and tape head move direction D € {L, R}.

36 D. Woods

Before generating the matrix we precompute some special images.

A Turing machine tape word is represented in a straightforward way as a
binary list image. We quickly generate all 2° possible words of length S in TIME
O(log S)? and SPATIALRES O(2°S). The output, denoted TapesVertical, is a list-
matrix image with 2 rows and S columns, where each row represents a unique
tape word. To do this we use an algorithm that (recursively) generates the matrix
image TapesVertical, /, of all words of length 5/2. We let f = TapesVertical,
then the following is repeated log.S times: place one copy of f immediately
above another, scale the two to one image, call the new image f. After this
repeated scaling f contains S copies of TapesVertical, ;,. We place f immediately
to the right of TapesVertical, /2 and the two are scaled to a single image to give
TapesVertical.

We generate the image TapesHorizontal that represents each possible tape
word repeated S times. More precisely, TapesHorizontal is the list image repre-
sentation of the binary word

(0%)%(0°~11)%(0°7210)%(05*11)% ... (1)

TapesHorizontal is generated in TIME O(S) and SPATIALRES O(2°S?) from
TapesVertical by copying and shifting subimages, the details are omitted.

A tape head position k € {1, ..., S} is encoded as the list image representation
of the word 0¥~110°~*. There are S such words and we generate these in TIME
O(log S) and SPATIALRES O(S?) by copying and scaling. The output P is a S xS
matrix image with ones on the diagonal (P;; = 1) and zeros elswhere. Each row
represents a unique tape head position. The image PositionsVertical consists of
29 vertically juxtaposed copies of P and is easily generated in TIME O(S).

We generate the image PositionsHorizontal that represents the list of all pos-
sible position words, repeated 2° times. More precisely, PositionsHorizontal is
the list image representation of the binary word

((105-1)(0105-2)(001053) .., (05—11))2S

PositionsHorizontal is generated in TIME O(S) and SPATIALRES O(2°52) from
PositionsVertical by copying and shifting subimages, the details are omitted.
Finally we precompute the image Pr which is identical to P except that the
represented tapes have their head positions moved one cell to the right (if the
head was on the rightmost tape cell then it is moved to the leftmost tape cell).
We are now ready to generate the transition matrix. The Turing machine has
at most 8|Q|? transition rules. For simplicity we assume that all 8/Q|? possible
transition rules are explicitly given. We begin by generating the transition matrix
for one of these transition rules ¢ that changes the machine from state g, to
state g, as follows: t = (q¢, 1,1, R, ¢;n). Thus we are generating a matrix image
that represents a binary matrix with entry (i, j) equal to 1 iff ¢; - ¢; via ¢.
First we generate a column image, denoted &1, with entry i € {1,...,255}
equal to 1 iff the read symbol of ¢; is 01 = 1. We use PositionsVertical as a mask
to isolate the read symbols from TapesVertical; that is we pointwise multiply

Optical Computing and Computational Complexity 37

PositionsVertical and TapesVertical in TIME O(1). The resulting matrix is called
MaskedReadSymbols. We vertically split MaskedReadSymbols into a left image
and a right image, pointwise add the two, and repeat; after log.S iterations the
output is the column image .

Secondly we generate a row image, denoted &2, where entry j € {1,...,255}
is 1 iff the write symbol of ¢; is 02 = 1. We use PositionsHorizontal as a mask to
isolate the write symbols from TapesHorizontal; that is we pointwise multiply
PositionsHorizontal and TapesHorizontal in TIME O(1). The resulting matrix
is called MaskedWriteSymbols. We ‘shuffle’ this row of 2% lists to a column
of 25 lists, that is we repeat the following S times: vertically split into a left
image and a right image, place the left image above the right and scale to one
image. Then we vertically split the result (in half) into a left image and a right
image, pointwise add the two, and repeat for a total of log S iterations. We then
‘unshuffle’ this column to a row in TIME O(S) to get 7.

Thirdly we generate a 255 x 258 binary matrix image called positions, where
entry (7,7) is 1 iff the tape head position on configuration ¢;, after a move to
the right (recall D = R), is equal to the tape head position of configuration c;.
To do this we generate Pj which is a S x S? matrix image with S copies of Pr
side by side. We then pointwise multiply Py, by the row image that represents

(10571)(010°72)(0010°~2) ... (05~ 11)

The result of this multiplication is a S x S? matrix image. Then (using the
technique of shuffling and adding mentioned above) this S x S? matrix image
is ‘shuffled’ log S times, vertically split and added log S times, and ‘unshuffled’
log S times. The resulting S x S matrix image is replicated 229 times to create
a ‘square’ 258 x 295 matrix image denoted positions.

We pointwise multiply &1, 2 and positions in TIME O(1), and threshold be-
tween 0 and 1, to get a 299 x 29 S binary matrix image. Entry (4, j) of this matrix
image is 1 iff ¢; yields ¢; in one step under the read symbol 1, write symbol 1
and tape head direction R.

This above procedure is repeated 8 times with different values for the triple
(01,092, D) where 01,02 € {0,1} and D € {L, R}. The resulting 8 matrix images
are pointwise added in TIME O(1) to give a matrix image denoted B. Entry (i, j)
in B is 1iff ¢; yields ¢; in one step under any (o1, 02, D). We then create a |Q| % |Q
matrix image where entry (4, j) is 1 iff state ¢; yields ¢; via some transition rule
(this can be computed sequentially in a straightforward way in TIME O(|Q|?), or
in parallel TIME O(log |Q|) using techniques similar to those above). We multiply
this by a 295|Q| x 2°5|Q| matrix image that consists of |Q|? copies of B. The
result is the binary matrix image that represents the transition matrix of M. 0O

3.3 Squaring the Transition Matrix

Lemma 2. Let n be a power of 2 and let A by a n X n binary matriz. The
matriz A? is computed by a Co-CSM, using the matriz image representation, in
TIME O(logn), SPATIALRES O(n?), GRID O(1), DYRANGE O(1), AMPLRES 1
and PHASERES 1.

38 D. Woods

Proof (sketch). In this proof the matrix, and its matrix image representation are
both denoted A. We being with some precomputation, then one parallel point-
wise multiplication step followed by logn additions completes the algorithm.

We generate the matrix image A; that consists of n vertically juxtaposed
copies of A. This is computed by placing one copy of A above the other, scaling
to one image, and repeating to give a total of logn iterations. The image A; is
constructed in TIME O(logn), GRID O(1) and SPATIALRES O(n?).

Next we transpose A to the column image As. The first n elements of As are
row 1 of A, the second n elements of Ay are row 2 of A, etc. This is computed
in TIME O(logn), GRID O(1) and SPATIALRES O(n?) as follows.

Let A = A and i = 2n. We horizontally split A’ into a left image A} and
a right image A’%,. Then A is pointwise multiplied (or masked) by the column
image that represents (10)%, in TIME O(1). Similarly A%, is pointwise multiplied
(or masked) by the column image that represents (01)°. The masked images are
added. The resulting image has half the number of columns as A’ and double the
number of rows, and for example: row 1 consists of the first half of the elements
of row 1 of A’ and row 2 consists of the latter half of the elements of row 1 of A’.
We call the result A’ and we double the value of i. We repeat the process to give
a total of logn iterations. After these iterations the resulting column image is
denoted As.

We pointwise multiply A; and As to give Az in TIME O(1), GRID O(1) and
SPATIALRES O(n?).

To facilitate a straightforward addition we first transpose As in the following
way: Az is vertically split into a bottom and a top image, the top image is
placed to the left of the bottom and the two are scaled to a single image, this
splitting and scaling is repeated to give a total of logn iterations and we call the
result A4. Then to perform the addition, we vertically split A4 into a bottom
and a top image. The top image is pointwise added to the bottom image and the
result is thresholded between 0 and 1. This splitting, adding and thresholding is
repeated a total of logn iterations to create As. We ‘reverse’ the transposition
that created A4: image As is horizontally split into a left and a right image, the
left image is placed above the right and the two are scaled to a single image,
this splitting and scaling is repeated a total of logn iterations to give A2. a

3.4 Proof of Main Result

At this point we have all the main ingredients for the proof of Theorem 3 which
goes as follows. Using Lemma 1 we generate the 2°5|Q| x 295|Q| binary transi-
tion matrix within the stated resource bounds. We put ones on the diagonal of
this matrix by pointwise adding it to the 295|Q| x 295|Q| identity matrix and
thresholding the result between 0 and 1, all in constant TIME (however generating
the identity matrix takes TIME O(S)). In TIME O(S?) we compute the reflexive
and transitive closure of this matrix by squaring it O(S) times via Lemma 2. In
terms of M’s input length n, the overall TIME is O(S?(n)) and both SPATIALRES
and SPACE are O(23°() S3(n)).

Optical Computing and Computational Complexity 39

Acknowledgements

Thanks to Cristian Calude, Grzegorz Rozenberg and the conference organisers
for inviting me to UC’06. Also thanks to Tom Naughton and Paul Gibson who
were collaborators on much of the previous work that is surveyed in Section 2.
This work is funded by the Irish Research Council for Science, Engineering and
Technology.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

H. H. Arsenault and Y. Sheng. An introduction to optics in computers, volume TT
8 of Tutorial texts in optical engineering. SPIE, 1992.

J. L. Balcédzar, J. Diaz, and J. Gabarrd. Structural complexity II, volume 22 of
EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1988.

. R. N. Bracewell. The Fourier transform and its applications. Electrical and elec-

tronic engineering series. McGraw-Hill, second edition, 1978.

. H. J. Caulfield. Space-time complexity in optical computing. In B. Javidi, editor,

Optical information-processing systems and architectures II, volume 1347, pages
566-572. SPIE, July 1990.

. A. K. Chandra and L. J. Stockmeyer. Alternation. In 17th annual symposium

on Foundations of Computer Science, pages 98-108, Houston, Texas, Oct. 1976.
IEEE. Preliminary Version.

. D. G. Feitelson. Optical Computing: A survey for computer scientists. MIT Press,

1988.

. L. M. Goldschlager. Synchronous parallel computation. PhD thesis, University of

Toronto, Computer Science Department, Dec. 1977.

. L. M. Goldschlager. A universal interconnection pattern for parallel computers.

Journal of the ACM, 29(4):1073-1086, Oct. 1982.

. J. W. Goodman. Introduction to Fourier optics. McGraw-Hill, New York, second

edition, 1996.

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford university Press, Oxford, 1995.

R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory ma-
chines, volume A. Elsevier, Amsterdam, 1990.

J. N. Lee, editor. Design issues in optical processing. Cambridge studies in modern
optics. Cambridge University Press, 1995.

A. Louri and A. Post. Complexity analysis of optical-computing paradigms. Applied
optics, 31(26):5568-5583, Sept. 1992.

A. D. McAulay. Optical computer architectures. Wiley, 1991.

T. Naughton, Z. Javadpour, J. Keating, M. Klima, and J. Rott. General-purpose
acousto-optic connectionist processor. Optical Engineering, 38(7):1170-1177, July
1999.

T. J. Naughton. Continuous-space model of computation is Turing universal. In
S. Bains and L. J. Irakliotis, editors, Critical Technologies for the Future of Com-
puting, Proceedings of SPIE vol. 4109, pages 121-128, San Diego, California, Aug.
2000.

T. J. Naughton. A model of computation for Fourier optical processors. In R. A.
Lessard and T. Galstian, editors, Optics in Computing 2000, Proc. SPIE vol. 4089,
pages 24-34, Quebec, Canada, June 2000.

40

18

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

D. Woods

T. J. Naughton and D. Woods. On the computational power of a continuous-space
optical model of computation. In M. Margenstern and Y. Rogozhin, editors, Ma-
chines, Computations and Universality: Third International Conference (MCU’01),
volume 2055 of LNCS, pages 288-299, Chiginau, Moldova, May 2001. Springer.

1. Parberry. Parallel complezity theory. Wiley, 1987.

V. R. Pratt, M. O. Rabin, and L. J. Stockmeyer. A characterisation of the power
of vector machines. In Proc. 6th annual ACM symposium on theory of computing,
pages 122-134. ACM press, 1974.

V. R. Pratt and L. J. Stockmeyer. A characterisation of the power of vector
machines. Journal of Computer and Systems Sciences, 12:198-221, 1976.

J. H. Reif and A. Tyagi. Efficient parallel algorithms for optical computing with
the discrete Fourier transform (DFT) primitive. Applied optics, 36(29):7327-7340,
Oct. 1997.

P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume A, chapter 1. Elsevier,
Amsterdam, 1990.

A. VanderLugt. Optical Signal Processing. Wiley Series in Pure and Applied
Optics. Wiley, New York, 1992.

K. Weihrauch. Computable Analysis: An Introduction. Texts in Theoretical Com-
puter Science. Springer, Berlin, 2000.

D. Woods. Computational complexity of an optical model of computation. PhD
thesis, National University of Ireland, Maynooth, 2005.

D. Woods. Upper bounds on the computational power of an optical model of
computation. In 16% International Symposium on Algorithms and Computation
(ISAAC 2005), volume 3827 of LNCS, pages 777-788, Sanya, China, Dec. 2005.
Springer.

D. Woods and J. P. Gibson. Complexity of continuous space machine operations. In
S. B. Cooper, B. Loewe, and L. Torenvliet, editors, New Computational Paradigms,
First Conference on Computability in Furope (CiE 2005), volume 3526 of LNCS,
pages 540-551, Amsterdam, June 2005. Springer.

D. Woods and J. P. Gibson. Lower bounds on the computational power of an
optical model of computation. In C. S. Calude, M. J. Dinneen, G. Paun, M. J.
Pérez-Jiménez, and G. Rozenberg, editors, Fourth International Conference on Un-
conventional Computation (UC’05), volume 3699 of LNCS, pages 237-250, Sevilla,
Oct. 2005. Springer.

D. Woods and T. J. Naughton. An optical model of computation. Theoretical
Computer Science, 334(1-3):227-258, Apr. 2005.

F. T. S. Yu, S. Jutamulia, and S. Yin, editors. Introduction to information optics.
Academic Press, 2001.

If a Tree Casts a Shadow Is It Telling the Time?

Russ Abbott

Department of Computer Science, California State University
Los Angeles, Ca, USA
Russ.Abbott@GMail.com

Abstract. Physical processes are computations only when we use them
to externalize thought. Computation is the performance of one or more
fixed processes within a contingent environment. We reformulate the
Church-Turing thesis so that it applies to programs rather than to com-
putability. When suitably formulated agent-based computing in an open,
multi-scalar environment represents the current consensus view of how
we interact with the world. But we don’t know how to formulate multi-
scalar environments.

1 Introduction

In the preface to the first edition of the International Journal of Unconventional
Computation, the editorial board [1] welcomed papers in “information process-
ing based on physics, chemistry and biology.” But the Board left undefined what
it means to say (a) that a physical, chemical, or biological system is doing “in-
formation processing” or (b) that information processing is “based on physics,
chemistry, or biology.” In this paper we explore these issues by focusing on these
questions.

— What is computation?

— How can computation be distinguished from other natural processes?

What is the relationship between ideas and computations?

What is the relationship between a computational process and the environ-
ment within which it occurs?

Our conclusions will be that physical processes are considered computation
when we treat them as externalized thought and that computation itself in-
volves the playing out of fixed processes against a contingent environment. We
re-interpret the Church-Turing Thesis: programs represent how we understand
rigorous thought to be expressed. We then agree with Wegner [2] that the agent-
based model of computation is the right way to think about interaction with an
environment. But we claim that we are not yet in a position to specify environ-
ments that are multi-scalar.

1.1 Is Google Reading My Email?

That’s the first question in the Google Gmail help center [3]. This question
arises because Gmail places ads next to email messages, and the selection of ads

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 41-56, 2006.
© Springer-Verlag Berlin Heidelberg 2006

42 R. Abbott

is based on the contents of the messages. Google’s answer to this question has
varied over time. On March 13, 2006, the posted answer was as follows.

Google computers scan the text of Gmail messages in order to filter
spam and detect viruses, just as all major webmail services do. Google
also uses this scanning technology to deliver targeted text ads and other
related information. The process is completely automated and involves
no humans. [Emphasis added.]

In other words, Google’s computers are reading your email-but no human
beings are. That most people find this reassuring illustrates the intuition that
it’s what goes on in the mind of a human being that matters to us.

One might object that if a computer is reading one’s email (and storing its con-
tents in a database), a person might read it later. That’s quite true, and the fact
that only Google computers (and not Google employees) are reading one’s email
when selecting ads does not guarantee one’s privacy. But if no person ever reads
one’s email, then most people will not feel that their privacy has been violated.

After all, all email is read by a number of computers as it passes from sender
to receiver. No one has ever worried about that. The moment of violation occurs
when some living human being becomes consciously aware of one’s personal
information.

But, one might argue, the kind of reading that occurs when a computer trans-
mits a message along a communication channel is qualitatively different from the
kind of reading that occurs when a Google computer determines which ads to
place next to a message. The former kind of reading treats messages as character
strings. No meaning is extracted. The kind or reading that Google computers do
extracts (or attempts to extract) meaning so that related ads can be displayed.

This raises the question of what we understand by the term meaning. That’s
clearly a larger topic than we can settle here, but our short answer is that our
intuitive sense of meaning has something to do with an idea or thought forming
in a mind." At this stage in the development of technology, most people don’t
believe it makes sense to say that an idea has formed in the mind of a computer-
or even to say that a computer has a mind at all. We may speak informally and
say something like “the computer is doing this because it thinks that.” But when
we say these sorts of things, we are deliberately speaking metaphorically. Until
we start to think of computers as having minds that have subjective experi-
ence, minds in which ideas can form-then most people will feel comfortable with
Google’s reply that its computers, but no human beings, are reading one’s email.

1.2 To Come

Section 2 continues the discussion of thoughts and introduces the notion of
thought tools, for which it provides a brief history. Section 3 considers how
computation might be defined. Section 4 discusses the agent-based computing

! This clearly is different from the formal semantics sense in which meaning refers to
a mapping from an expression to a model.

If a Tree Casts a Shadow Is It Telling the Time? 43

paradigm as more than just an approach to programming and modeling but as
common to many of the ways we think about both thinking and our interaction
with nature.

2 Thinking and Thought Tools

If a tree grows in a forest, but no one counts its rings is it counting years? Is it
performing an unconventional computation? If a tree grows in a forest but no
one knows it’s there, is it instantiating the idea of a tree? These questions have
the same sort of answers as does Bishop Berkeley’s famous question: if a tree
falls in a forest with no one around to hear it, does it make a sound?

Berkeley’s question is not as difficult as it seems. Our answer, which is differ-
ent from Berkeley’s,? is that one must distinguish between physical events and
subjective experience. If a tree falls in a forest, it generates (what we call) sound
waves whether someone is there to hear them or not. But if no one is there to
hear the sound, if no being has a subjective experience of the sound, then no
sound will be heard.

The same holds for ideas. Like the subjective experience of a sound, the idea
of a tree exists only as a subjective experience. If no one has that subjective
experience, then a tree without anyone knowing about it will not be instantiating
the idea of a tree.

Even if one grants that the idea of a tree is exactly the right way to describe
that particular aspect of nature, that idea exists only as an idea, and it exists
only in the mind of someone who is thinking it. Ideas exist only within the realm
of mental events, i.e., as subjective experience. In saying this we are taking an
explicitly anti-Platonist stance: there is no realm outside the mind in which ideas
exist on their own.?

This is not intended as mystical or profound-just a statement of a brute fact:
an idea is something that occurs only in someone’s mind. The ideas in this
paper exist only in the mind of the author and the minds of the readers as the
author and readers are thinking them. These ideas don’t exist on the paper or
on the computer screens on which these words appear. They don’t exist in the
computer memory in which these words are stored. Just as the moment at which
an invasion of privacy occurs is when some being-with-a-mind learns something
personal about us, an idea exists only when someone is thinking it.* We go to
such lengths to make this point because our position is that computations, like

2 Berkeley’s answer is that it makes a sound because God, who is always everywhere,
hears it.

3 We are not taking a stand on nominalism vs. realism. Although we believe that our
(human) ideas about how nature should be described are not arbitrary and that
entities other than the elementary particles exist (see Abbott [4]), that is not at
issue here.

4 This position requires some care in formulation. If an idea exists only when someone
is thinking it, what does it mean to say that two people have or had “the same”
idea? We believe that these issues can be worked out.

44 R. Abbott

ideas, are also mental events, but mental events that we have externalized in a
way that allow us to use physical processes to perform them.

When a tree grows rings, it just grows rings. But when we use that tree-ring
growth as a way to count years, i.e., to help us work with ideas such as the
idea of a year, then we can say that the tree has performed a computation-an
unconventional one.

When a computer runs is it computing? Our answer is the same. A computer
is computing only when it is understood to be performing some externalized
mental activity. Otherwise, it’s just an arena within which electrons are moving
about.

2.1 A Brief History of the Internalization and Then the
Externalization of Thought

One may trace one thread through the history of thought as the internalization
and then the externalization of thought. Initially we looked outward for answers
to questions about how to make sense of the world. Not knowing what else to do,
we looked to sources of what we hoped were authority: priests, oracles, prophets,
sacred writings, divinities, etc., to tell us what thoughts to install in our minds.’

We often fought with each other about whose sources of knowledge were right.
In a recent op-ed piece [5] Lorenzo Albacete, a Roman Catholic priest, articulated
the position of those who fear the use of religion as a source of knowledge.

For [nonbelievers], what makes Christianity potentially dangerous [is not
its other-worldliness but] its insistence that faith is the source of knowl-
edge about this world.

As Albacete later notes, by the time of the Roman Empire, the use of religion
as a source of ideas about how nature works had been discarded by enlightened
thinkers. Greek and Roman philosophers believed that they themselves could
be a source of knowledge about the world. The step from looking for external
sources of knowledge to supposing that perhaps we can figure it out for ourselves
is what we are referring to as the internalization of thought-attributing to oneself
the power to produce thoughts of value and rejecting the notion that thoughts
must originate externally to be valid.

2.2 Externalizing Thought and Tools to Work with It

The history of early computing may be traced along three paths. Each path
traces devices that help us think about a particular (and fundamental) subject
area: time, counting (arithmetic), and space (geometry).

5 One wonders what priests, oracles, prophets, and other human authorities believed
about how the ideas they transmitted arrived in their own minds. Perhaps they
believed that the ideas had been implanted in their minds as a result of their special
status or as a result of some special words or rituals that they performed. Perhaps
they were just transmitting ideas that had been transmitted to them. Presumably
they didn’t believe that they themselves made up these ideas. Most likely they didn’t
ask themselves this question.

If a Tree Casts a Shadow Is It Telling the Time? 45

2.3 Time Computers

We used natural processes to help us express our ideas about time-the daily,
monthly, and yearly cycles of the earth, moon, and sun. Not to beat this point
into the ground, day, month, and year are ideas. As ideas, they exist only in the
mind-no matter how accurate or true they are as descriptions of nature.

The first (analog®) time computers were the actual processes that corre-
sponded to our thoughts. The rising and setting of the sun were the physical
events that we used to keep track of the mental events: the start and end of a
day. Similarly for the moon. Yearly events such as river floodings and the com-
ings and goings of the seasons helped us keep track of the mental event: the
yearly cycle.

It didn’t take us long to invent more sophisticated analog computers. The
sundial, for example, is an analog computing device. The position of the sun’s
shadow is an analog for the mental event time-of-day which corresponds to the
physical relationships between the relative positions of the sun and the earth.

It is worth noting that with the sundial we started to arrange physical materi-
als to help us track our thoughts. In building sundials we set up shadow casters,
which in conjunction with the sun and markings on the surface on which the
shadow is cast, helped us track (our ideas about) the passing of the day. Pre-
sumably this was not a very significant step from using existing shadow-casting
objects, e.g., trees, for the same purpose. Hence our title: if a tree casts a shadow,
is it telling the time?

2.4 Using Epiphenomenal Shadows to Tell the Time

The use of shadows as thought tools deserves special attention. In [4] we discuss
naturally occurring entities that persist independently of human observation.
These include atoms, molecules, animals, organizations, hurricanes, galaxies, and
most of the things we intuitively think of as entities. Shadows are not in this
category.

A shadow, after all, is that portion of a background that is not illuminated
by a light source because an object is blocking the light. The shadow itself
is not an entity. At best a shadow-and more importantly, the leading edge of a
moving shadow-is an epiphenomena of the changing relationships among the light
source, the background, and the object. Although the mechanisms are completely
different, a (moving) shadow is very much like a (moving) pattern (such as a
glider pattern) in the Game of Life. In both cases, the apparent object (the
shadow or the Game of Life pattern) consists of illuminated/not illuminated or
on/off elements on a surface. Over time, the on/off elements may appear to move
across the surface. In fact, the on/off elements don’t move; it is only the patterns
of on/off elements that appear to move.

But patterns don’t move either. With both Game of Life patterns and shad-
ows, portions of the surface are on and portions of the surface are off at any

5 An analog computer is so called because can be understood as analogous to some-
thing else.

46 R. Abbott

given time. That the same or similar on/off configurations appear first at one
location and then at another is a consequence of the mechanisms that generate
those shadows and patterns. Patterns and shadows themselves are not capable
of moving either under their own power or as a result of some force being applied
to them. Neither shadows nor patterns can propel themselves. Nor can one push
or pull them.

The mechanisms that produce both shadows and Game of Life patterns are
fixed-and thoughtless. The Game of Life rules are simply rules for how and when
cells turn on and off. The relative motion of the sun, a tree (or other shadow
casting object), and a background surface is equally fixed and thoughtless. Yet
in both cases, we can use the generated patterns to represent our thoughts.

Using Game of Life patterns we can generate very complex idea. Similarly, we
can interpret sun/object/ground shadow patterns to help us think about ideas
such as the time of day or day of the year. We had the idea of a day and a
year, and we used shadows to help us think about them before we knew what
produced them. In both cases, we used patterns generated by fixed rules to help
us think.

2.5 Number Computers

Apparently we started to count quite early. Bones with notches carved into them
appeared in western Europe 20,000 to 30,000 years ago. There is evidence of the
use of a tally system-groups of five notches separated from each other. With
tally systems not only did we mark physical materials to help us keep track of
numbers (which are also mental events), we also invented ways to make counting
easier by the way in which we arranged these markers, i.e., in groups. Soon we
invented the abacus.

With these primitive computers we separated the computational process from
its dependency on natural processes. Sundials and astronomical masonry de-
pend on the sun and the stars. Counting depends on nothing other than human
activity. Once we invented computational devices that were independent of
non-human physical processes it was a short step to written notation. By ap-
proximately 3,000 BC cuneiform writing on clay tablets using positional notation
was known in Babylonia.

2.6 Space Computers

Besides time and numbers, the Pythagoreans in Greece and Euclid in Egypt
developed ways to think about space. We know that early geometers thought
about construction issues. The straight edge and compass were their (human-
powered) thought tools. They used them to externalize, to create representations
of, and to manipulate the ideas of straight lines and circles.

2.7 Is It Reasonable to Call Abaci and Geometers’ Tools
Computers?

Even though abaci and geometers’ tools are completely independent of non-
human physical processes, i.e., they are entirely dependent on human activity

If a Tree Casts a Shadow Is It Telling the Time?

« 7

to make them “run,” we feel justified in calling them computers because they
are used according to mechanical rules. Even though the source of energy for
an abacus is the user, the abacus user follows strict rules-rules which could be

automated.

2.8 Thought Tools for Symbol Manipulation

Beyond time, numbers, and space, we have also built thought tools to represent

symbolic thoughts and relationships. Sowa [6] describes the Tree of Porphyry.

The oldest known semantic network was drawn in the 3rd century AD
by the Greek philosopher Porphyry in his commentary on Aristotle’s
categories. Porphyry used it to illustrate Aristotle’s method of defining
categories by specifying the genus or general type and the differentiae
that distinguish different subtypes of the same supertype.

Another attempt to externalize symbolic thought has been credited to Ramon
Lull in the late 13th century. Smart [7] describes it as follows.

Ramon Lull’s logic machine consisted of a stack of concentric disks
mounted on an axis where they could rotate independently. The disks,
made of card stock, wood, or metal, were progressively larger from top
to bottom. As many as 16 words or symbols were visible on each disk.
By rotating the disks, random statements were generated from the align-
ment of words. Lull’s most ambitious device held 14 disks.

The idea for the machine came to Lull in a mystical vision that appeared
to him after a period of fasting and contemplation. It was not unusual in
that day... scientific advances to be attributed to divine inspiration. He
thought of his wheels as divine, and his goal was to use them to prove
the truth of the Bible...

In “Gulliver’s Travels,” Swift satirizes the machine without naming Lull.
In the story, a professor shows Gulliver a huge contraption that generates
random sequences of words. Whenever any three or four adjacent words
made sense to-gether, they were written down. The professor told Gul-
liver the machine would let the most ignorant person effortlessly write
books in philosophy, poetry, law, mathematics, and theology.

This may be the first use of non-determinism in computing.

Soon thereafter William of Ockham discovered the foundations of what were
to become De Morgan’s laws of logic. More specifically, from Sowa [8]:

(Ockham, 1323) showed how to determine the truth value of compound
propositions in terms of the truth or falsity of their components and to
determine the validity of rules of inference... in terms of the truth of their
antecedents and consequents.

48 R. Abbott

2.9 Thought Tools and the Scientific Process

Clocks, abaci, straight-edges, hierarchies, non-determinism, laws of logic, and
other thought tools differ in kind from microscopes, telescopes, and other scien-
tific instruments of observation. The former are intended to allow us to external-
ize and manipulate our thoughts. The latter allow us to investigate nature-to see
what’s out there and perhaps to see things that will require new ideas to under-
stand them. Thought tools are constructive; instruments of scientific observation
are reductive.

Thus after having convinced ourselves that we are capable of generating our
own ideas, an important next step was to realize the necessity of testing our ideas
against nature. Simply coming up with an idea is not enough. It’s important both
to externalize it as a way to work with it and to test it by looking at nature
though it. Thus science consists fundamentally of three kinds of activity.

1. Uncovering new facts (observations) about nature.

2. Reverse engineering nature to figure out how nature may have harnessed
understood principles to produce the observed facts.” Although reverse en-
gineering sounds unglamorous, it is a fundamental activity. Determining that
our genome is encoded as a double helix was reverse engineering.

3. Establishing new fundamental principles and then using them as the basis
of the reverse engineering process. This occurs only in fundamental physics.

Scientific instruments help us with (1). Thought tools help with (2) and (3).

2.10 The State of the Art of Thought Externalization

Every computer application is a thought tool. The thoughts that are being ma-
nipulated are the thoughts that are represented by the conceptual model im-
plemented by the application. More importantly every programming language
is a thought tool. Programming languages allows us to externalize in the form
of computer programs our thoughts about symbolic behaviors. Since one writes
computer applications in programming languages, a programming language is
a thought tool for building thought tools, i.e., a thought tool for externalizing
thought.

It is important to realize that a programming language is itself a computer
application. As a computer application, it implements a conceptual model; it
allows its users to express their thoughts in certain limited ways, namely in
terms of the constructs defined by the programming language. But all modern
programming languages are also conceptually extensible. Using a programming
language one can define a collection of concepts and then use those concepts to
build other concepts.

We are still learning to use the power of computers to externalize thought. In
one way or another, much of software-related research is about developing more

” Reductionism has recently received a lot of bad press. As explicated here, the reduc-
tionist impulse often leads to the development of important new ideas.

If a Tree Casts a Shadow Is It Telling the Time? 49

powerful, more specialized, faster, easier to use, or more abstract thought tools.
We also develop increasingly powerful languages in which to externalize and
work with our thoughts. The more we learn about externalizing our thoughts the
higher we ascend the mountain of abstraction and the broader the vistas we see.

Work in externalizing thought includes declarative programming (e.g., logic
programming, functional programming, constraint-based programming, rules-
based systems such as expert systems, etc.), meta and markup languages such
as XML and its extensions and derivatives, the Unified (and Systems) Model-
ing Language (UML and SysML), and the Semantic Web and the OWL Web
Ontology Language for externalizing how we look at the world. With OWL we
are working in a tradition that dates back to Porphyry-and before. Domain-
specific applications also represent externalization of how we think about those
domains. Thought tools for the manipulation of images, sounds, videos, etc. have
externalized ways of thinking about those domains.

3 Defining Computation

In this section we turn to the question of how to define computation. It is surpris-
ingly difficult to find a well considered definition. The one offered by Eliasmith
[9] appears to be the most carefully thought out. Here is his definition and his
commentary.

Computation. A series of rule governed state transitions whose rules can
be altered. There are numerous competing definitions of computation.
Along with the initial definition provided here, the following three defi-
nitions are often encountered:

1. Rule governed state transitions.
2. Discrete rule governed state transitions.
3. Rule governed state transitions between interpretable states.
The difficulties with these definitions can be summarized as follows:
a) The first admits all physical systems into the class of computational
systems, making the definition somewhat vacuous.
b) The second excludes all forms of analog computation, perhaps in-
cluding the sorts of processing taking place in the brain.
¢) The third necessitates accepting all computational systems as repre-
sentational systems. In other words, there is no computation without
representation on this definition.

Contrary to Eliasmith we suggest the following.

a) The notion of alterable rules is not well defined, and hence all physical sys-
tems are potentially computational systems.

b) But, it is exactly the fact of interpretability that makes a physical process
into a computation. (Eliasmith doesn’t explain why he rejects the notion
that computation requires interpretation.)

50 R. Abbott

Eliasmith requires that the rules governing some identified state transitions
must be alterable in order to distinguish a computation from a naturally oc-
curring process-which presumably follows rules that can’t be altered. But all
computing that takes place in the physical world is based on physical processes.
If we set aside the probabilistic nature of quantum physics, and if we suppose
that physical processes operate according to unalterable rules, it’s not clear what
it means to say that it must be possible to alter a set of rules.

This is not just being difficult. Certainly we all know what it means to say
that one program is different from another-that “the rules” which govern a com-
putation, may be altered. But the question we wish to raise is how can one
distinguish the altering of a program from the altering of any other contingent
element in an environment?®

It is the particular program that is loaded into a computer’s memory that
distinguishes the situation in which one program is being executed from that
in which some other program is executing. But a computer’s memory is the
environment within which the computer’s cpu (or some virtual machine) finds
itself, and a loaded program defines the state of that environment. The cpu (or
the virtual machine) is (let’s presume) fixed in the same way that the laws of
nature are fixed. But depending on the environment within which it finds itself-
i.e., the program it finds in its environment—the cpu operates differently, i.e., it
performs a different computation.

This same sort of analysis may be applied to virtually any natural process.
When we put objects on a balance scale, the scale’s behavior will depend on
the objects loaded, i.e., on the environmental contingencies.? In both the case of
programs loaded into a computer and objects put in the pans of a balance scale,
we (the user) determine the environment within which some fixed process (i.e.,
the rules) proceeds.

This brings us back to our original perspective. A process in nature may be
considered a computation only when we use it as a way to work with exter-
nalized thought. A physical or otherwise established process-be it the operation
of a balance scale, a cpu, the Game of Life, or the sun in motion with respect
to trees and the ground-is just what it is, a fixed process.'® But for almost all
processes,'! whether we create them or they arise naturally, how the process

8 We don’t address the issue of “hard-wired” computations. How fixed must state
transitions be before one is no longer willing to say they aren’t alterable-and hence
not a computation?

9 When a balance scale compares two objects and returns an “output” (selected from
left-is-heavier, equal-weights, and right-is-heavier), is it performing a computation?
It is if we are using it for this purpose. It isn’t if we are using it as a designer setting
for flower pots.

10 Of course many processes-such as the operation of a cpu and the operation of a balance
scale-are what they are because we built them to be that way-because we anticipated
using contingencies that we could control in their environment to help us think.

' Some quantum processes may occur on their own without regard to their
environment-although even they are environmentally constrained by the Pauli ex-
clusion principle.

If a Tree Casts a Shadow Is It Telling the Time? 51

proceeds depends on environmental contingencies. When we control (or inter-
pret) the contingencies so that we can use the resulting process to work with our
own thoughts, then the process may be considered a computation. This is the
case whether we control the contingencies by loading a program into a computer,
by placing objects on a balance scale, by establishing initial conditions for the
Game of Life, or by giving meaning to shadows cast by trees.

Consequently we agree with Eliasmith that it must be possible to alter a
process for it to be considered a computation, but we would express that con-
dition in other words. For a process to be considered a computation there must
be something contingent about the environment within which it operates which
both determines how it proceeds and determines how we interpret the result.

In other words, we can always separate a computational process into its fixed
part and its contingent or alterable part. The fixed part may be some concrete
instances of the playing out of the laws of nature — in which case the contingent
environment is the context within which that playing out occurs. Or it may be
the operation of a cpu-in which case the contingent environment is the memory
which contains the program that is being executed. Or it may be the operation of
a program that a cpu is executing — in which case the contingent environment is
the input to that program. A computation occurs when we alter the contingencies
in the environment of an fixed process as a way to work with our thoughts.

This perspective contrasts traditional (theoretical) computation with real-
world computation. Normally, one thinks of a (theoretical) computation as a
contingent process-one which is defined in a programming language. Like a Tur-
ing Machine it runs for free. We contrast this with real-world computations,
which result from non-contingent processes which have built-in energy sources
and that operate in contingent environments.

3.1 Non-algorithmic Computing

A corollary of the preceding is that all computation performed by real-world
processes are environmentally driven. Computing involves configuring environ-
mental contingencies, i.e., setting up an environment within which a process (or
multiple processes) will play themselves out. We refer to this as non-algorithmic
computing because one’s focus is on how an environment will shape a process
rather than on a specific sequence of steps that the shaped process will take. No
explicit algorithm is involved. Most of what we call unconventional computation
is non-algorithmic.

It may seem ironic that what we think of as conventional computation is a
constrained form of unconventional computation. We are attracted to it because
its single threaded linearity makes it easy to manage. But nature is not linear.
Any computer engineer will confirm how much work it takes to shape what really
goes on in nature into a von Neumann computer. Even more ironically, we then
turn around and use conventional single-threaded computers to simulate nonlin-
ear unconventional computation. One might say that a goal of this conference
is to eliminate the von Neumann middle man — to find ways to compute, i.e.,
to externalize our thoughts, by mapping them more directly onto the forces of

52 R. Abbott

nature operating in constrained environments. The operations performed by the
forces are nature are real-world individual Turing Machines. A general purpose
computer is a real-world Universal Turing Machine.

3.2 Turing Machines vs. Turing Computability

Why can’t we look to Turing Machines (and their equivalents) for a definition of
computation which is defined independently of thought? Turing Machines, recur-
sive functions, and formally equivalent models rely on the notions of symbols and
symbol manipulation, which are fundamentally mental constructs. Eliasmith’s
definition doesn’t — although his definition does depend on the notion of rule-
governed state transitions, which appears difficult to define non-symbolically.
The saving grace of states and state transitions is that they are intentional; they
are our way of thinking about what happens in nature. Symbol manipulation is
a purely mental activity.

But Turing Machines — and their Church-Turing Thesis equivalents — offer an
important insight. They identify symbol manipulation to be what we intuitively
think of as computational activity. The Turing Machine model is our way of
externalizing an entire class of mental activities, the class that we intuitively
identify as computational.

In saying this we are separating (a) the sorts of computational activities char-
acterized by Turing Machines, i.e., the Turing Machines themselves, from (b)
the class of functions that these models compute, i.e., Turing computability. The
various models of computational activities are all defined constructively, i.e., in
terms of the operations one may perform when constructing a computational
procedure. Furthermore, the equivalence proofs among the standard models are
also constructive. We can constructively transform any Turing Machine into a
recursive function and vice versa. Turing Machines, recursive functions, etc. are
equivalent as programming languages.

Computability theory then takes the generic class of software defined in this
way and applies it to the task of computing functions. But this second step isn’t
necessary. What’s important about the Church-Turing Thesis is not the class of
functions that can be computed but the possible programs one may write, i.e.,
that Turing Machines, recursive functions, etc. are our way of externalizing a
fundamental mode of thought. Our revised version of the Church-Turing Thesis
is that to be considered rigorous a thought process must, at least in principle,
be expressible as a software.

4 Agent-Based Computing

The Turing Machine model is single threaded-as are the single processor von Neu-
mann computers that we built based on it. But many of our computer science (and
other) thought models are either parallel, asynchronous, or non-deterministic. Not
all rigorously defined models are linear and single threaded. Yet we have been un-
able to build thought tools to help us externalize these kinds of non-deterministic

If a Tree Casts a Shadow Is It Telling the Time? 53

computational ideas. Attempts to perform non-deterministic computations on a
single-threaded computer result in unrealizable demands for resources.'2

Four decades ago agent-based computing, an intermediate form of compu-
tational framework, began to emerge Dahl [10]. Agent-based computing is an
attractive form of asynchronicity because it relies on manageable parallelism-
asynchronous computing threads that don’t result in an unrealizable demand
for computing re-sources. Its price is chaotic asynchronicity: minimally different
event orderings may yield different results.

4.1 Open and Far-from-Equilibrium Computing

Goldin and Wegner [11] have defined what they called persistent Turing Ma-
chines (and elsewhere interaction machines). These are Turing Machines that
perform their computations over an indefinite period-continually accepting in-
put and producing output without ever completing what might be understood
as a traditional computation. Results of computations performed after accepting
one input may be retained (on the machine’s ”working tape”) and are available
when processing future inputs. Although Wegner’s focus is not on agent-based
computing, his model is essentially that: agents which interact with their envi-
ronments and maintain information between interactions. From here on we use
agent to refer to an object that embodies a program.

Goldin and Wegner claim that their “interactive finite computing agents are
more expressive than Turing machines.” There has been much debate about this
claim. We believe that to ask about the level of computability of agents is to ask
the wrong question. We believe that what Wegner and Goldin have done is to
have taken implicitly the same stance that we took explicitly above, i.e., to dis-
tinguish between the programs one can write and the functions those programs
can compute. In making this implicit distinction Wegner and Goldin point out
that one need not think of the program that a Turing Machine embodies in func-
tional terms, i.e., as closed with respect to information flow. One can also think
of a Turing Machine as open with respect to information flow. This parallels the
distinction in physics between systems that are closed and open with respect
to energy flows. Wegner has outlined this position most recently in [12]. Com-
plex systems are famously far from equilibrium with respect to environmental
energy flows. Wegner and Goldin’s interaction machines (and agents in general)
are similarly far from equilibrium with respect to information flows.

What might one gain from being open to information flows? An illustrative
example is Prisoner’s Dilemma (PD). If one were to develop an optimized PD
player for a one-shot PD exchange-since it’s one shot, the system is closed-it will
Defect. Playing against itself, it will gain 1 point on each side-using the usual
scoring rules. If one were to develop an optimized PD player to engage in an iter-
ative PD sequence-the system is open-it will Cooperate indefinitely (presumably
by playing a variant of Tit-for-Tat), gaining 3 points on each side at each time.

12 1f we get it to work on a useful scale quantum computing may be the first such thought
tool.

54 R. Abbott

Thus the same problem (PD) yields a different solution depending on whether
one’s system is presumed to be open or closed with respect to information flows.

4.2 Agents and Their Environments

Computation involves the interaction of a process with its environment. In all
cases with which we are familiar, the environment is modeled as a simply struc-
tured collection of symbols, e.g., a tape, a grid, etc. None of these models are
adequate when compared to the real-world environment within which we actu-
ally find ourselves. We do not know how to model the multi-scalar face that
nature presents to us — but almost certainly it won’t be as a tape or a grid.

— In our actual environment new entities and new kinds of entities may come
into existence. We are able to perceive and interact with them. We are aware
of no formal environmental framework capable of representing such phenom-
ena.

— We do not understand the ultimate set of primitives — if indeed there are
any — upon which everything is built.

We have referred [4] to these problems as the difficulty of looking upwards
and the difficulty of looking downwards respectively.

We are just beginning [4] to understand the nature of entities and of the multi-
scalar environment within which they exist. That environment involves entities
on multiple levels, but it also involves forces at only the most primitive level.
All other interactions are epiphenomenal. This is not simply a layered hierarchy,
although it has some layered hierarchy properties.

Given our lack of understanding about these issues it is not surprising that
we have not been able to develop a formal model of such an environment. Thus
a fundamental open problem in computing is to develop a formal model of an
environment that has the same sorts of multi-scalar properties as our real-life
environment.

Our revised version of the Church-Turing Thesis gives us confidence that our
current understanding of agents as entities that embody programs is reasonably
close to how we think about thinking. We are still quite far from the goal of for-
malizing appropriate environments within which such agents should be situated.

4.3 The Inevitable Evolution and Acceleration of Intelligence

As we saw in the PD example, thinking in terms of open computation model
leads to different results from thinking in terms of closed models. Yet both use
the same class of possible programs-whatever is programmable in a general pur-
pose programming language. Since open computation models include the class
of Oracle machines, computability doesn’t seem like the appropriate perspective
when analyzing these systems. Is there another approach? We suggest that the
notion of results achieved is more relevant. In the PD case, the result achieved
is the number of points scored.

If a Tree Casts a Shadow Is It Telling the Time? 55

Under what circumstances would it make sense to think of an agent in terms
of results achieved? In [4] we discuss the nature of emergent entities. Static
entities persist at an energy equilibrium in energy wells; but the more interest-
ing dynamic entities persist only so long as they can extract energy from their
environment.

Unfortunately most agent-based computer models either ignore the issue of
energy or treat it very superficially. We believe that an integrated theory of
energy and information would clarify how information flows enable evolution.
A real-world agent would be a dynamic entity that embodied some software.
If, through a random mutation, such an entity developed an enhanced abil-
ity to extract information from its environment then it will be more likely to
survive and reproduce. What evolves in this model is an enhanced ability to
extract information from the environment. The need of dynamic entities for en-
ergy drives evolution toward increasingly more powerful informational processing
capabilities.'?

In this picture, information is being extracted from the environment at two
levels. Each individual extracts information from the environment, which it
processes as a way to help it find energy. Very simple real-life examples are plant
tropisms and bacterial tendencies to follow nutrient gradients. More interest-
ingly, the evolutionary process itself extracts information from the environment,
which it then encodes (in DNA) as the ”program” which individual agents use
to process information from their environment. Thus the real intelligence is in
the program, and the real information extracting activity is the evolutionary
process that constructs the program.!?

Can evolution itself evolve? Is there something that will enable an entity to ex-
tract information from the environment more effectively? Modern society stores
information about how to process information from the environment as science.
Can we go beyond science? Can the scientific process itself evolve? Science is the
process of constructing mechanisms to extract and process information from the
environment. Since science is a thought process, tools that enable us to exter-
nalize and improve our scientific thought processes will enhance our ability to
do science.

5 Conclusion

An environmentally sophisticated agent-based paradigm involves agents, each of
which has the computing capability of a Turing machine, situated in an environ-
ment that reveals itself reluctantly. Such an agent in a real-world environment is
like an Oracle machine, with nature as the oracle. Combining agents with dynamic
entities yields real-world agents, which (a) must extract energy from their envi-
ronment to persist and (b) embody software capable of processing information

13 This seems to answer the question of whether evolution will always produce intelli-
gence. It will whenever increased intelligence yields enhanced access to energy.

14 Qystems that have attempted to model this process have failed because their envi-
ronments are too poor.

56

R. Abbott

flows from the environment. The agent-based thesis is that this paradigm repre-
sents how, at the start of the 21st century, we think about our place with the world.

Acknowledgment. Many of the ideas in this paper were elaborated in discus-
sions with Debora Shuger.

References

10.

11.

12.

. IJUC Editorial Board, Preface [to the first edition] from the Editorial Board, In-

ternational Journal of Unconventional Computing, 1, 1 (2004), 1-2.

. P. Wegner, D. Goldin, Interaction, Computability, and Church’s Thesis, British

Computing Journal, 1999.

. Google, Help Center, undated. Accessed March 12, 2006: http://mail.google.

com/support/bin/answer.py?answer= 29433&query=faq&topic=0&type=f.

. R. Abbott, Emergence Explained, to appear in Complexity.
. L. Albacete, For the Love of God, New York Times, Feb 3, 2006.
. J. Sowa, Semantic Networks, http://www.jfsowa.com/pubs/semnet.htm, June 2,

2006, revised from S.C. Shapiro (ed)., Artificial Intelligence-Encyclopedias, John
Willy & Sons, Inc, 1992, 1493-1511.

. Smart Computing, undated. Accessed February 20, 2006: http://wuw.

smartcomputing.com/editorial/dictionary/detail.asp?guid=&searchtype
=1&DicID=18707&RefType=Encyclopedia.

. J. Sowa, Existential Graphs, 2002. Accessed February 20, 2006: http://wuw.

jfsowa.com/peirce/ms514.htm.

. C. Eliasmith, Computation, entry in Dictionary of the Philosophy of Mind, C.

Eliasmith (ed.), May 11, 2004 http://artsci.wustl.edu/~philos/MindDict/
entry.html.

O.-J. Dahl, K. Nygaard, Simula: an ALGOL-based simulation language, Commu-
nications of the ACM, 9, 9 (1966), 671-678.

D. Goldin, P. Wegner, Behavior and Expressiveness of Persistent Turing Ma-
chines, Computer Science Technical Report, Brown Univ., 1999, http://www.
cs.montana.edu/~elser/turing papers/Behavior and Expressiveness of
PTM.pdf .

P. Wegner et al., The Role of Agent Interaction in Models of Computing, Electronic
Notes in Theoretical Computer Science, 141 (2005).

Peptide Computing — Universality and
Theoretical Model

M. Sakthi Balan! and Helmut Jiirgensen!:?

! Department of Computer Science
The University of Western Ontario
London, Ontario, Canada, N6A 5B7
sakthi@csd.uwo.ca
2 Institut fiir Informatik, Universitéit Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany

Abstract. We present a new simulation of Turing machines by peptide-
antibody interactions. In contrast to a simulation presented previously,
this new technique simulates the computation steps automatically and
does not rely on a “look-and-do” approach, in which the Turing machine
program would be interpreted by an extraneous computing agent. We
determine the resource requirements of the simulation. Towards a precise
definition for peptide computing we construct a new theoretical model.
We examine how the simulations presented in this paper fit this model.
We prove that a peptide computing model can be simulated by a Turing
machine under certain conditions.

1 Introduction

To use peptide-antibody interactions as a model of computation was proposed
by H. Hug et al. [5]. In [1] it was shown that the model is universal; the proof
of this result uses a simulation of the computation of a Turing machine by
peptide-antibody interactions. While that simulation is clearly correct, some of
its properties are not convincing intuitively. We address some of these issues in
this paper.

A peptide is a sequence of amino acids attached by covalent bonds called
peptide bonds. A peptide consists of recognition sites, called epitopes, for the
antibodies. A peptide can contain more than one epitope for the same or different
antibodies. With each antibody, which attaches to a specific epitope, a binding
power is associated, called its affinity. When antibodies compete for recognition
sites — which may overlap in the given peptide — then the antibodies with greater
affinity have a higher priority.

Replacing an antibody by one with a greater affinity can be considered a
computational step in a re-writing process: the antibody with smaller affinity is
removed — affinity-based removal — and an antibody with greater affinity attaches
to the epitope which became free. Antibodies can also be removed by adding ex-
cess epitopes — epitope-based removal. In the sequel, the term peptide computing
refers to computational processes based on these as elementary operations.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 57-71, 2006.
© Springer-Verlag Berlin Heidelberg 2006

58 M.S. Balan and H. Jiirgensen

In [5], it was shown how to solve the satisfiability problem using peptide
computing. To show that peptide computing is universal, a simulation of Tur-
ing machines by peptide computing was presented in [1]. The simulation uses
epitope-based removal. Thus peptide computing is at least as powerful as Turing
computing. Whether the converse holds true depends on the precise limitations
imposed on the model for peptide computing and, in particular, on the way how
affinity is modelled.

The simulation of a Turing machine M by peptide computing as presented
in [1] is not totally convincing in the following sense:

First, the simulation relies on an extraneous computing agent to interpret the
computation of the Turing machine step-by-step and to simulate the observed
behaviour by appropriate peptide-antibody interactions. This agent could, for
instance, be a human taking notes of the steps of the Turing machine and select-
ing and mixing the required molecules. Thus, the simulation is not automatic;
it is a “look-and-do” method. “Extraneous computing agents” are part of any
formal model of computation, even the Turing model, — usually hidden in the
definition of computational steps. The important issue is to limit the “power”
of this agent.

Second, the simulation requires an unbounded number of epitopes and anti-
bodies. The length of the peptide sequence in terms of epitopes and the number
of antibodies needed are both approximately proportional to the amount sy of
space used for the Turing computation.

As mentioned above, the size of the alphabets used in the simulation is not
bounded, but depends on the size of the input and the specific computation.
To encode the antibodies and epitopes over a finite alphabet would increase
the resource and time requirements. It seems that a comma-free encoding, even
a solid code, would be needed to identify the locations of the epitopes in the
peptide uniquely (see [7] for a survey of the relevant properties of codes). In
this case, for s epitopes or antibodies to be encoded over an alphabet with r
symbols, > 1, about ¢; log, s symbols are needed per epitope or antibody for
some ¢; > 1. Thus, the size of the peptide is O(sp(w) - log sp(w)). Moreover,
also the time bound increases by a factor of ©(log sa(w)) to account for the
search for and the handling of, the appropriate epitopes and antibodies. While
such an encoding is mathematically feasible, it is not clear at this point, whether
this idea would work in the bio-chemical setting.

In the present paper we address the first of the short-comings of the previous
simulation. We propose a method for encoding the definitions of the transition
in the interactions between peptides and antibodies. We prepare the peptide se-
quences and antibodies in such a way that they select and execute the transitions
automatically. The new model relies primarily on affinity-based removal, with
epitope-based removal restricted to intermediate operations in the simulation.
Moreover, we present a formal model of peptide computing which enables us to
express the converse simulation, that of a peptide system on a Turing machine.
Within this model one can formulate the precise conditions for this simulation
to be possible.

Peptide Computing — Universality and Theoretical Model 59

Whether our formal model is adequate for the bio-chemical realities will not
be discussed in this paper. In many ways, the abstraction is an extreme sim-
plification. Hence one may be justified to conclude for our work that peptide
computing is at least as powerful as Turing computing, if not more powerful. It
is not clear whether the constraints making the models equivalent can be made
to hold true bio-chemically. Moreover, it is certainly also important to investigate
the actual usability of a peptide computing system.

Our paper is structured as follows. In Section 2 we review some notational
conventions. The new proposal is presented in some detail in Section 3. In Sec-
tion 4 we construct a theoretical model for peptide computing. We also examine
how the proposed new simulation fits with our theoretical model in the Section
5. In Section 6 we present the simulation of a peptide computing model by a
Turing machine under certain conditions. We summarize and discuss the results
in Section 7. The reader should consult [1] to compare the simulation methods
and to determine how the former simulation fits in the framework of the new
model.

2 Notation, Basic Notions

For a set S, |S| denotes the cardinality of S. When S is a singleton set, S = {z}
say, we write x instead of {z}. For sets S and T, consider a relation 9 C S x T.
Then o1 is the relation o=t = {(¢,5) | (s,t) € o} and, for s € S, o(s) = {t |
(s,t) € o}. We use the notation g : S = T to denote a partial mapping of S
into T'. In that case dom g is the subset of S on which g is defined. The notation
o : S — T means that S is a total mapping of S into T, hence dom ¢ = S in this
case.

Let S be a non-empty set. A multiset on S is a pair M = (I,¢) where [is a
set, the index set, and ¢ is a mapping of [into S, the indexing. A multiset M
is non-empty, if I is non-empty; it is finite if I is finite. For s € S, the number
{i | ¢ € I,u(i) = s}| is the multiplicity of s. When I is countable, we write
M = {m; | i € I} where m; = (i) is implied. With this notation, it is possible
that m; = m; while ¢ # j for i, € I. We use the standard symbols for set
theoretic operations also for multisets. However, on multisets, union is disjoint
union and both intersection and set difference take multiplicities into account.
Formally this can be handled by appropriate operations on the index sets.

By N and Ny we denote the sets of positive integers and of non-negative
integers, respectively. The set B = {0,1} represents the set of Boolean values.
For n € Ng, n = {i | i € Ng,i < n}. Thus, for example, 0 = 0, 1 = {0} and,
in general, n = {0,1,...,n — 1}. By R we denote the set of real numbers, and
Ry ={r|reR,r>0}

An alphabet is a non-empty set. Let X be an alphabet. Then X* is the set of
all words over X including the empty word A, and X = X*\{\}. For a word w €
X*, |w] is its length. Any word u € X* with w € uX* is a prefix of w; let Pref(w)
be the set of prefixes of w; the words in Pref, (w) ={u|ue X, w € uX*} are
the proper prefixes of w. Similarly, a word v € X™* with w € X*uX™ is an infix of

60 M.S. Balan and H. Jiirgensen

w, Inf(w) is the set of infixes of w and Inf; (w) = {u | v € X, u € Inf(w),u # w}
is the set of proper infixes of w. A language over X is a subset of X*. For a
language L over X and Y € {Pref, Pref,,Inf, Inf, }, Y(L) = U, o1 Y (w).

Let L be a language over X and w € X*. An L-decomposition of w is a
pair of sequences (ug,u1,...,ux), (vo,v1,...,vk—1) of words in X* such that
UOVQULVY * * * Vg—1 UK = W, Vo, V1,...,0k—1 € L and wo,u1,...,up ¢ X 'LX*. A
language in X such that every word has a unique L-decomposition is called a
solid code [7). Consider w € X of length n, say w = xozy - - Tp—1 with z; € X
for i = 0,1,...,n — 1. An L-decomposition of w as above can be specified by
a set of pairs {(i;,5;) | I = 0,1,...,k — 1} such that, for I = 0,1,...,k — 1,
Ul = T3, T4,41 - - - Tj,. Let Op(w) be the set of L-decompositions when represented
in this way. Let D(L) = {(w,d) | w € X*,d € Jr(w)} be the set of words
together with all their L-decompositions.

A (deterministic) Turing machine is a construct M = (@, X, 6, qo, F,b) such
that @ is a finite non-empty set of states, X' is a finite non-empty alphabet with
QNXY =0, qo € Q is the start state, ' C Q is the set of final states, b is the blank
symbol, b ¢ Y UQ, and 6§ : Q x (X Ub) — @ x (¥ Ub) x {L,R} is the (partial)
transition function. Here L and R, for ‘left’ and ‘right’, denote the directions of
the movement of the read-write head on the Turing tape. We assume that (g, a)
is undefined for all ¢ € F. We generally denote the movement of the head by
d € {L,R}. For more details on Turing machines see [4]. If M is Turing machine
we represent the language accepted by M as L(M). We denote the space and
time complexity functions of M as spq and .

In the sequel, it is sometimes convenient to have special symbols for states
and inputs. In this case, let Q = {q0,¢1,---,G¢m-1} and X = {ag,a1,...,a1-1}.

3 Automatic Simulation of a Turing Machine by Peptides

In the simulation presented in [1], the transition function of the Turing machine
is not encoded in the peptide system. To remedy this we not only need such an
encoding but also a method for looking up instructions and for their execution.

Theorem 1. Let M = (Q, X, 6, qo, F,b) be a Turing machine. There is a simu-
lation of M by peptide computing with the following properties:

(1) There is a constant ¢ > 0, independent of M, such that the number of
peptide-antibody interactions needed for the simulation of a computation step
of M is no greater than c. As a consequence, the number of peptide antibody
interactions needed for the simulation of a computation of M on input w € X*
is mo greater than ¢ - tp(w).

(2) The number of peptide sequences needed for the simulation of a computa-
tion of M on input w € X* is in O(sp(w)); moreover the number of antibodies
needed is in O((|Q] + |X]) - sm(w)).

Proof Idea. We assume that M has only a single final state. This restriction is
easily lifted at the cost of a more complicated argument.

Peptide Computing — Universality and Theoretical Model 61

We use five sets of peptide sequences: a set T' to simulate the cells of the tape
of M; P to hold the program of M; S to synchronize the operation; and two
sets I; and I, for carrying out intermediate steps.

Each sequence in T consists of four epitopes and uniquely denotes a cell on
(T) (1)

the tape of M. For cell i, the epitopes are €; ', ..., e; 4 such that the peptide is
pl(») = e(l)axz Z(TQ)yZ (T) with ez(-?;) = xiegg)yi for some words z; and y;. The set T,

with antlbodles attached to the epitopes represents the respective configuration
of the Turing machine.

The set P contains a peptide sequence for each pair (¢, a) € @ x X for which
6(q,a) is defined. It will capture the transition applied when M is in state ¢
and reading the symbol a. A typical peptide sequence in P has three epitopes

(P)) (P) Py _ () (P) ; (P)
€a.a).1 €(g.a).2 204 €(gq) 5 and has the formpe, o) = e o) yeqq) o With e) 5 €
Infy (p Ef])a)) and which intersects both egqpl) , and egqpl) 5

The set S contains a peptide sequence for each pair (¢,a) € Q x X for which

6(q,a) is defined. Tt will control the execution of a transition step. A peptide
sequence in S has the form pgf)a) = z(q’a)egj)a) 16552) o- It has the three epitopes
(8) S
(9:0),1° “(g,a),))
Finally the sets I; and I contain peptlde sequences as follows. Each se-

quence in I; contains epitopes eEIl) and e(q a) 5 and is represented by P () _

e , and the whole sequence itself is an epitope.

q,a),1 (gq,a)
egél)) 16813 . All the peptide sequences in I; are initialized with antibodies A, 4
which bind to the epltope egq) . Each sequence in the set I» contains only one

I2)
(g,
If, as in [1], one starts the simulation with a space bound s initially, one has:

|T'| = s using 4s epitopes; |P| = |Q] - |X| using 3|P| epitopes; |S| = |Q]| - | X
using 3|S| epitopes; |I1| = |Q] - | X| with 2|I;| epitopes; and |I3| = |Q| - | X| with
|I5] epitopes. Of course, each of the sets would contain multiple copies of each
peptide sequence.

We now describe the encoding of the transition function 6 of M. Suppose
(P)

(I2) (I2)

epitope, namely el a)’ and is represented by Piga) = Yq.a)

6(¢,a) = (¢’,a’,D) for D € {L,R}. Then, we have a peptide sequence Plg.a) in
P with antibodies A, and A, p attached to it at epitopes eg l) , and egl) 95

respectively. Thus each sequence in P encodes the transition for state ¢ and
symbol a; The antibodies Ay and Aq p need to be ‘read,” that is, removed, to
execute the transition. To achieve this we need to use the sets I7, Is, and S as
explained further below. If ¢’ € F then the antibody A, will be a labelled one;
this helps to know that the simulation has halted.

Now we describe the encoding of a configuration of M. For each cell ¢ we
record its contents, what its neighbours are and, possibly the state of M if the
cell is currently the one being scanned. For each cell i we need antibodies A;

which attach to the epitopes ez(-_{)lvl and eg)m; moreover, for each a € X we need

an antibody A, which can attach to xiegg)yi. Thus, if a € X Ub is the current

contents of cell 7, then pz(-T) has A;_1, Ay and A;1 attached to its epitopes ez(-)Tl),

62 M.S. Balan and H. Jiirgensen
ez(-?;) and egg), respectively. We assume, as before, that peptide sequences for
enough cells are available to conduct the computation. Those not occupied by

input symbols are initialized to b.

For g € Q and a € X Ub the antibodies A, and (A, or A, p) can attach to
(8))

(q,a), (q,a),2 in S, respectively.

the epitopes e ; and €

1. For sequences in T: We need antibodies A,p and A;. The epitope of A, p

(T) (1) (1) (1)

is wie; 5 y;. The epitopes of A; are €; 5, €;°5 and ;" where k = j — 1 and

I = j + 1 with more affinity for A; to the epitope egg). The affinity of A, is
greater than that of A, p.

2. For sequences in S: We need antibodies B, .. The epitope of B, is pgqs’)a).
The antibodies A, and A, p from T also attach to this sequence. The epitopes
for A, and A, p are eEqS,)a)J and egi)a)ﬂ respectively. The affinity of B, , is
greater than that of antibodies A, and A, p.

3. For sequences in I;: We need antibodies A, , and B, p. The epitope of 4, ,

is eEq 3) The epitope of By p is eE 1) o- The antibodies A; and A, p from T'
(I)

also attach to this sequence. The epltope of Ay is €lg.a)1 and the epitope for

Agp is eE)) o- The affinity of A, is greater than that of A,; for all b € X.
The affinity of B, p is greater than that of Agp.

4. For sequences in I>: The antibodies Ay, and A, p attach to the sequences

in I5. The epitope for both of them is eg 2)) The affinity of A, p is greater

than that of Agq
5. For sequences in P: We need antibodies A, and A, p which are initialized to
these. The antibodies A, , also attach to these. The epitopes of A,, A, p and

Aq.q are egl) . egfl) , and egfl) 3- The affinity of A, , is greater than that

of both the antibodies A; and Aj; 5 provided there is a transition 6(q,a) =

{(g,a,D)}.

We can now define the simulation of a step of M by peptide computing. Each
such step consists of a cycle of reactions which is initiated by having antibodies
A, for the current state and antibodies A; for the current cell floating; moreover,
we assume that no antibodies are attached to the peptide sequences in S and Is.
Thus, to start the computation, we add antibodies A,, and A; corresponding
to the configuration in which M is in the initial state gy and is reading the first
cell.

Suppose now that the floating antibodies are A, and A; and that the antibody

A, is attached to pET) where a € X' Ub. Then A; attaches to the epitope eEQ by

greater affinity and removes A,. Hence the two antibodies 4, and A, attach to

their respective epitopes egqs)a) , and eE))2 in S. The presence of two antibodies

binding to a peptide sequence S denotes the fact the machine is about to select
the transition from the sequences in P, and Ps.

Now we flush out all the unnecessary epitopes and antibodies still floating in
the liquid.

Peptide Computing — Universality and Theoretical Model 63

Next, we add antibodies B, for all p € @ and b € ¥ which have a greater
affinity than the corresponding A, and Ay. They attach to the epitopes

Z(q,a),legj)a) leEj)a) , for a € X Ub. This will remove the antibodies A, and A,
from the sequence in S.

The antibody A, which is removed from the sequence in S attaches to a
sequence in I; to the epitope egli) , with greater affinity and removes the ini-

tialized antibodies A, for all b € X. The antibody A, attaches to the epitope

Eéli) ,- The antibodies A, ; attach to the sequences in I with the epitope egér"i).

Now we add antibodies B, for all b € X' and these attach to the epitopes egéli) 9

with greater affinity and remove the antibody A,. The antibody A, then attach
to sequences in I with higher affinity to the epitopes egi)
antibody A, .. Hence with these sequence operations two distinct antibodies 4,
and A, denoting the state of the system and the symbol to be read has given
rise to a single antibody A, , which denotes both the state and the symbol to
be read. This takes care of circular arguments arising from cycles in M.

Now A4, attaches to the epitope 65(};31)73 with greater affinity and removes the

antibodies A7 and A, 5 where ¢ and @ are such that 6(¢,b) = (g, b,D). Hence the
antibodies Az and Aj 5 which were previously initialized with this sequence are
now set free. For this to work, A, , is assumed to have a greater affinity than
both Az and A, 5 for all g € Q, B€ Y Ub and D € {L,R}.

Hence the system has selected the correct antibodies corresponding to the next
state as Az and the symbol to be rewritten as A; 5. The antibody Ag attaches to
the sequence in S and waits for the antibody denoting the next symbol. Here we

add excess epitopes eg) which will eventually remove antibody A; (supposing

€

and removes the

the j* cell has been read by M) from the peptide sequence p;T). Now the

antibody A; 5 attaches to the sequence in T' to the epitope axieg)yieg? ifD=R

or to the epitope eg)xieg)yi if D = L. This in turn removes the antibody Aj

(if it is a right move) or A;_; (if it is a left move) which will bind to the next
peptide sequence in the epitope egg) and remove the antibody denoting the next
symbol to be read from the sequence, say Ap. The antibody A, attaches to the
sequence in S. Thus the system is ready for the next transition. This process
continues until a labelled antibody attaches to a sequence in S. After this step
there will be various epitopes and antibodies unnecessarily floating in the liquid;
hence we have to flush out all the floating molecules.

This peptide system accepts a string if and only if it is accepted by the Turing
machine. In the procedure above, for the peptide sequences in T we need 3sq +
2 - |X| antibodies; for the sequences in S, |Q| - |X|; for I1, |X| + |Q| - |¥|; for
I5 there is no need for new antibodies; and for the sequences in P, the exact
number depends on the transition table of M.

The simulation presented above requires an infinite number of antibodies
which, however is recursively enumerable. We can consider antibodies as be-
ing encoded over a finite alphabet (at least in our formal model). For instance

64 M.S. Balan and H. Jiirgensen

the set A could be an infinite solid code over a finite alphabet Y with |Y] > 2;
such codes exist as shown in [6].

To encode n symbols by a solid code the maximal code word length is in
O(logn) [8]. Thus we obtain the following corollary of Theorem 1.

Corollary 1. Let M = (Q, X, 6, qo, F,b) be a Turing machine. There is a sim-
ulation of M by peptide computing with the following properties:

1. Only a finite alphabet is required,
2. A step is simulated in O(log saq) steps.

4 Modelling Peptide Computations

In this section we give a rigorous definition of peptide computing. This will allow
us to determine, precisely, the capabilities and limitations of this computing
paradigm.

It is usually easy to invent a new model of computation. Moreover, showing
its universality only requires the simulation of Turing machines. To show that
the proposed model is no more powerful than Turing machines is often quite a
bit harder. For some pitfalls see the insightful discussion of computing models
in [3]. The explication of the notion of computability as provided, for instance,
by Church’s (or Turing’s) Thesis, regardless of its precise wording, is, essentially,
recursive as it explains intuitive computability by steps which are, themselves,
assumed to be intuitively computable and a program, the execution of which, is
intuitively computable. On the one hand, the random access machine, in which
an unbounded number of memory cells holding integers of unbounded size is
used, can be shown to be polynomially equivalent to a Turing machine — although
it is not obvious at all that moving around unbounded information is intuitively
computable. On the other hand, a very simple look-alike of a Turing machine
decides problems which are undecidable when using a Turing machine. Indeed,
it is a simple consequence of a result of [3] that any degree of non-computability
can be achieved just by the topology of the memory structure, that is, the way
by which addresses are calculated.

A model M of computation defines M -computability. By computability without
reference to a specific model we mean intuitive computability. Thus Church’s The-
sis (or Turing’s Thesis), in its simplest form, states that Turing-computability and
computability are equivalent notions. In [2] some of the subtleties of Church’s The-
sis are pointed out, which, for our purposes, are not relevant, however. Moreover,
there are various stronger versions of the thesis, which we do not need here either,
but which are useful as axioms in other contexts. By [1], Turing computability im-
plies peptide computability; hence, using Church’s Thesis, computability implies
peptide computability.

To study the converse implication a significantly more formal definition of
peptide computing is needed. In the sequel we present a formal model. Whether
this model is adequate for the bio-chemical realities, is a matter of further re-
search.

Peptide Computing — Universality and Theoretical Model 65

Definition 1. A peptide computer is a quintuple P = (X, E, A, a, 3) where X
is a finite alphabet (to represent basic building units like molecules), E C X is
a language (to represent epitopes), A is a countable alphabet with AN X* =
(to represent antibodies), « C E x A is a relation (such that a € a(e) means that
antibody a can be attached to epitope €), B : E x A — R, is a mapping such
that B(e,a) > 0 if and only if (e,a) € a (denoting the affinity between epitope e
and antibody a).

Consider a word w € X+ and d € g(w). An A-attachment is a partial mapping
7:d > A. Suppose w = xoxy -2, and d = {(iy,5;1) | 1 = 0,1,...,k —1}. Then
7 defines a word w, € (X U (E x A))* as follows: For all [= 0,1,...,k—1, if
(41,41) € dom T replace e = x;, x4, 41 -~ xj, by (e,7(iz,j1)) in w. Such a mapping
T is legal if (e,7(is, 1)) € a for all I. When 7 is legal then w, € (X Ua)* and 7
is called an A-attachment to w. For a language L C X+, let 7(L) be the set of
A-attachments to words in L. Conversely, a word z € (X U «)* defines a word
w € X* and a set of A-attachments 7, such that w, = z. Note that w is uniquely
defined, but that 7 may apply to several d € dpw.

Consider a word z € (X Ua)™ and a symbol a € A. Let w and 7 be such that
w; = z. Moreover, let w = zgzy - -z, with zg,z1,...,x, € X. Consider any
d € Opw with dom T C d and any d’ € Ogw. For (4,j) € d' let e; ; = x;xi41 - - - 5.
We say that a dominates (i, j) in z when the following condition is satisfied: For
all (¢/,7') € dsuch that {¢,9'+1,...,5'}n{é,i+1,...,5} #0and (¢/,5') € dom T,

Bleij,a) > B(xixygr -z, 7(i',5")).

In such a case, all pairs (¢/,5') € d with {¢/,¢' +1,...,7/yn{s,i+1,...,5} #0
are said to be affected. If a dominates (i, j) in z, the following basic reaction will
happen forming a multiset R(z, a): For each affected pair (¢, j'), a copy of 7(i'j")
is put into R(z,a); let Y C dom 7 be the set of pairs which are not affected and
let d” € dgw be such that Y U (4,j) C d”. Define the A-attachment 7 : d” 5 A
by 7(p) = 7(p) for p € Y and 7(4,j) = a. Put a copy of w; into R(z,a). The
multiset R(z,a) is the result of a basic reaction between z and a. If a is binding
with z and some symbols are released from z when R(z,a) is formed then we
denote the set of released symbols by Out(z,a). If nothing is released when a
binds then Out(z,a) will be {A}.

We also need to consider basic reactions between words z, 2’ € (zUa)T, where
z and z’ need not be different. Again we want to define the resulting multiset
R(z,2"). We use w, d and 7 as above. Now 2’ = w’, where 7’ : d’ = A for some
d' € Opw'. Consider (i',j') € dom 7" and let a = 7/(i'j'). Moreover, let e}, ;, be
the infix of w’ which starts at " and ends at j'. Suppose a dominates (¢, j) in
z for some (i,5) € d € Opw and B(e; j,a) > B(e} jisa), then the reaction is as
follows.

Since the basic reaction between two words z and z’ are with respect to a,
we represent the result of this reaction by R,(z,2’). This reaction takes place
in two steps: first the reaction SepR,(z, z’) takes place. This reaction produces
the multiset containing z, z” and a, where 2z is defined as follows: let 7/ be the

66 M.S. Balan and H. Jiirgensen

restriction of 7" to dom 7'\ ('§'). and 2" is defined as z” = w/,. Then the next
step is the reaction resulting in R(z,a). As in the previous reaction Out(z1, 22)
denotes the set of symbols released from z; when a binds with z;. Note that
when z and 2’ are the same occurrence of a word then SepR,(z, 2") consists only
of 2" and a.

The basic reactions resulting in R(z,a) and R,(z,z") take place only when
there is instability. Instability between z and a occurs when a dominates (4,5) €
Opw where z = w,. Likewise instability between two words z and z’ occurs when
there is a symbol a = 7/(i’, j') where (i’,j') € dom 7" and 7’ : d’ > A for some
d e 8E(w’).

We also note that one basic reaction can trigger a sequence of reactions; this
might even lead to a cycle which in turn will not lead to any stable configuration.

In the sequel we refer to R(z,a) (or Ry (21, 22)) as the result of a basic reaction
or as a multiset, whichever is appropriate to the context.

Definition 2. Let P be a peptide computer. A peptide configuration is a finite
multiset of words in (X Ua)t U A.

We denote a peptide configuration as P. To a peptide configuration P, a basic
reaction may apply when instability exists in the configuration, that is, there
may be 2,2’ € (XUa)" or a € A which occur in P such that R(z,a) differs from
the multiset consisting of z and a or R(z, z’) differs from the multiset consisting
of z and 2’. In either case a basic reaction non-deterministically removes (z, a)
or (z,2') from P and adds R(z,a) or R(z,z’), respectively. Let R(P) be the set
of peptide configurations which result from P through one basic reaction. For
n € Ny, let R™ be the n-fold iteration of R.

Definition 3. A peptide configuration P is said to be stable if R(P) = {P}.
If R™(P) consists of stable configurations only, for some n, define R*(P) =
R"™(P) for this n. Otherwise, R*(P) = 0. Let I" be the class of stable peptide
configurations.

To define peptide computations, we also need the following objects:

Definition 4. A peptide instruction has the form +P or —P where P is a
peptide configuration.

When P’ is a peptide configuration and I is a peptide instruction then

P'UP, ifI=+P
AN) ’
I(P)_{P’\P, if [= —P,

with union and difference taken as multiset operations.

Definition 5. A peptide program is a pair (3, x) where B is a mapping from
I'* into the set of peptide instructions and x is a (halting) function x : I’ — B.

Peptide Computing — Universality and Theoretical Model 67

Definition 6. Let P be a peptide computing model and let (I, x) be a peptide
program for P. A peptide computation is a word ¢ = cocy---¢; € I'™ with
co,C1,---,ct €1 such that

ci € R*(Peoer - cim1)(ciz1))

fori=0,1,....¢
A computation as above starts with co € R*(P(X)) and ends when x(¢;) =1
for the first time.

To encode inputs we need a mapping v from inputs to I', an input encoding; we
also need an output decoding, that is, a mapping ¢ from I" to outputs.

Definition 7. A function f from inputs to outputs is peptide computable if
there is a peptide program B, a computable input encoding v of inputs into P(N)
and a computable decoding of I' into outputs such that, for every x € dom f,
there is a peptide computation cocy - - ¢p with co,c1,...,¢¢ € I' and y(z) = ¢
satisfying x(ct) =1 and 6(¢) = f(z).

5 How the New Simulation Fits the Peptide Model

We describe how our proposed simulation of Section 3 can be carried out by the
peptide model presented in Section 4.
We define the sets X, E, A and describe the relations « and 3 as below:

1. X = {Xl,Xg,- , X20};

() Dy oDy (1) (T
{6117 127 zS’xZ 12y“ zQyZ 2,3 zlml zle}U{e(qa 1 (qa 2}U

I)) (P)
{ q 1’ qla)Q}U{eqa)}U{eqa)17e(qa)2’ (g,a) 3} and
LA = {AaDvA BqaaAqavBaDaAq}‘
(Aasely), (Aase E?ej;?) (Aaps el el ><A“e£>>
(Ait1,e 23)) (Ai—1,e 51)7(‘4476)a)(A“’e(qa)),
(9) I) (1)
4. a0 = { (Aap EZIIL; 2)7(Bq aap((}Lt)l)) (A, eqla()Il)) (Ag.a: (q(l?)) 1)
(Aap: (g a),0)s Babs €1g) 2)s (Aaas €giay)s (Aas €0y

(a,

(A, et s (Aap, eﬁiz),y (Agar o 5): (Aier5)

5. To define 8, we can assign a positive real number (non-zero) from R to

each pair in a such that the affinity relation described in Section 3 is valid.
Together with this we define 8 such that A; dominates e(?

6. If ¢ is some configuration then the halting function x(cy) is defined as 1 if a

labelled symbol A, is present in the configuration ¢, with the sequence in S.

The sequences used for this simulation are the same ones as in Section 3.
The only new sequences are eg 2) Hence we have five sets of sequences over X
denoted by T, P, S, I and Is.

The number of symbols in A is infinite. The peptide sequences S and I, are

used as they are. The other sequences are extended to sequences over (X U a)*.

68 M.S. Balan and H. Jiirgensen

First we take the sequences from P: these sequences are extended to sequences
over (X Ua«)* as follows:

P _ (P (P)
Plga) = (Clga)10Aa)(€(ga)2: Aarn).

These sequences are formed for every transition §(¢,a) = (¢’,a’,D). Every se-

quence in T representing a cell of the Turing machine is formed as follows: for

pET) eT,
p" = (e i) (@iel Y yi, A) (el Aia).

(I1)

The sequence Plga

) € I, is extended as follows:

Iy _) (1)
Plga) = (€(gay1:Aad)(ga) 2

Hence we have sets of sequences T', P and I; over (X U a)* and sets S and I
over X: these sequences are taken as the initial configuration. Processing starts
by adding two symbols A,, and A; to the initial configuration. In general let A,
and A; be the symbols added to the configuration; assume that A, is present

(T)))

with the sequence p;”’. Now two reactions take place resulting in R(A,, qu a)

and R(A4;, pET)). The first reaction changes pgi)a) into,

S _ .9 ()
Plga) = (e(qya)yl’Aq)e(qya)Q'

The second reaction results in Out(A4;, pET)) = {A,}. It changes ") into,

pl(,T) — eg)xi(eg),A yie Z(?

After these reactions the free symbol A, triggers a new reaction resulting in
R(Ampgs)a)), that is, the sequence

(S) (S) (9)
Plgw) = (¢(ga)1Aa)(€(gay 20 Aa).

Then symbols Bp p are added for all p € @Q and b € X; this stimulates reactions

resulting in R(p(p)b)7 By). Hence the sequences pE b) become,

s _ S (5
Pty = (%0.5€(g.0)1¢(q.a) 20 Brb)

with Out(P, a), Byo) ={Aq, As}; when b # a or p # g, Out(p(p by B, ») = {A}
The prebence of symbols A, and A, paves the way for two more reactions leading

to R(p(q a) ,Ag) and R(pglg A,). Hence the sequence pgéi) changes to,

(L) _ () (1)
Plga) = (€gay1r Aa)(€(gia) 20 Aa)

Peptide Computing — Universality and Theoretical Model 69

with Out(pgla) q) = {Aqp} for all b € X'. The symbols A, which are released

2) (12

a.a) (0. a) becomes,

give rise to reaction resulting in R(p E Agp) and the sequence p

I I
pet) = (el Aas).

(g,a

Then we add symbols By, for all b € X which results in R(pglg)Bb), and

I I I
pgqfi) - (egqi)vl’A‘I)(egqi)Q’Bb)
with Out(p 1)) ») = { As}. The presence of the symbol A4, leads to R(12) Aa)
(I2)

and p(q .

) becomes

Pl = (efn4a)

with Out(p 12)) Ay) = {Aga)-

Hence two symbols denoting the state ¢ and the input symbol a, through a
sequence of reactions have been transformed into a single symbol A, , which
denotes both the state and the input symbol of the machine.

The symbol Ay, stimulates the reaction resulting in R(pgfl), Ay o) and this
gives rise to the sequence

P _ (P)
Piga) = z(e (qa)3’A a)y
with Out(pgl)7 Aga) = {Ag, As 5} where g and a are such that (¢, a) = (¢, a,D).
Hence the peptide computer has reached the next state ¢ from ¢ and selected

the symbol to be rewritten as a. Now we add sequences égg) which leads to

R(pl(»T) ég)) (where A; dominates éz(-)TQ)) and results in the separation of A; from

» &4
pET) and the sequence ég) becomes (égg)7Ai). This creates space for A;5 to

bind to it by the reaction resulting in R(pET)7A575). Hence the sequence p(-T)

becomes,
7 = (e, A