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Preface

The 5th International Conference on Unconventional Computation, UC 2006,
organized under the auspices of the EATCS by the Centre for Discrete Mathe-
matics and Theoretical Computer Science of the University of Auckland, and the
Department of Computer Science of the University of York, was held in York,
UK, September 4–8, 2006.

York combines evidence of a history going back to Roman times with a
bustling modern city center. The Minster, built on the foundations of the Roman
city and an earlier Norman cathedral, is among the finest Gothic cathedrals, and
dominates the city. Romans, Vikings, and more recent history are commemorated
in a number of top-class museums, as well as being apparent in the architecture
of the city.

The series of InternationalConferences on UnconventionalComputation (UC),
https://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/, is devoted to all
aspects of unconventional computation, theory as well as experiments and
applications. Typical, but not exclusive, topics are: natural computing includ-
ing quantum, cellular, molecular, neural and evolutionary computing; chaos and
dynamical systems-based computing; and various proposals for computations that
go beyond the Turing model.

The first venue of the Unconventional Computation Conference (formerly
called Unconventional Models of Computation) was Auckland, New Zealand in
1998; subsequent sites of the conference were Brussels, Belgium in 2000, Kobe,
Japan in 2002, and Seville, Spain in 2005.

The titles of volumes of the past UC conferences are the following:

1. C.S. Calude, J. Casti, M.J. Dinneen (eds.). Unconventional Models of Com-
putation, Springer, Singapore, 1998, viii + 426 pp. ISBN: 981-3083-69-7.

2. I. Antoniou, C.S. Calude, M.J. Dinneen (eds.). Unconventional Models of
Computation, UMC’2K, Springer, London, December 2000, xi + 301 pp.
ISBN 1-85233-417-0.

3. C.S. Calude, M.J. Dinneen, F. Peper (eds.). Third International Confer-
ence, UMC 2002, Proceedings Lecture Notes in Computer Science, Vol. 2509,
Springer, Heidelberg, 2002, vii + 331 pp. ISBN: 3-540-44311-8.

4. C.S. Calude, M.J. Dinneen, M.J. Pérez-Jiménez, Gh. Păun, G. Rozenberg
(eds.). Proc. 4th International Conference Unconventional Computation,
Lecture Notes in Computer Science, Vol. 3699, Springer, Heidelberg, 2005,
xi + 267 pp. ISBN: 3-540-29100-8.

The Steering Committee of the series of International Conferences on Uncon-
ventional Computation includes T. Bäck (Leiden, The Netherlands), C.S. Calude
(Auckland, New Zealand, Co-chair), L.K. Grover (Murray Hill, NJ, USA), J. van
Leeuwen (Utrecht, The Netherlands), S. Lloyd (Cambridge, MA, USA), Gh. Păun
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(Bucharest, Romania, and Seville, Spain), T. Toffoli (Boston, MA, USA), C. Tor-
ras (Barcelona, Spain), G. Rozenberg (Leiden, The Netherlands, and Boulder,
Colorado, USA, Co-chair), A. Salomaa (Turku, Finland).

The five key-note speakers of the conference were:

1. Gerard Dreyfus (ESPCI, Paris, France): Graph Machines and Their Appli-
cations to Computer-Aided Drug Design: A New Approach to Learning from
Structured Data

2. Michael C. Mozer (Department of Computer Science, and Institute of Cogn-
tive Science, University of Colorado, USA): Rational Models of Cognitive
Control

3. Reidun Twarock (University of York, UK): Self-Assembly in Viruses
4. Erik Winfree (Computer Science and Computation & Neural Systems, Cal-

ifornia Institute of Technology): Fault-Tolerance in Biochemical Systems
5. Damien Woods (University College Cork, Ireland): Optical Computing and

Computational Complexity

UC 2006 included the following tutorials:

1. Andrew Adamatzky, Benjamin De Lacy Costello, Tetsuya Asai (Computing,
Engineering and Mathematical Sciences, University of the West of England,
Bristol, UK): Reaction-Diffusion Computers

2. Cristian S. Calude (University of Auckland, New Zealand): Computing with
Randomness

3. Nataša Jonoska (University of South Florida, USA), and Darko Stefanovic
(University of New Mexico, USA): Biomolecular Automata

4. Viv Kendon (University of Leeds, UK): Quantum Computing
5. Joseé del R. Millán (Institute for Systems, Informatics and Safety Joint

Research Centre, Ispra, Italy): Brain Signal Analysis
6. Christof Teuscher (LANL, USA): To Compute, or not to Compute

The workshop “From Utopian to Genuine Unconventional Computers” was
part of this year’s conference.

The Programme Committee thanks the much appreciated work done by the
paper reviewers for the conference. These experts were: Nevil Brownlee, Sam
Braunstein, Douglas S. Bridges, Matteo Cavaliere, Cristian S. Calude, S. Barry
Cooper, Jack Copeland, David Corne, Gabor Csardi, Erzsebet Csuhaj-Varjú,
Michael J. Dinneen, Peter Erdi, Marian Gheorghe, Georgy Gimel’farb, James
Goodman, Jozef Gruska, Oscar H. Ibarra, Mario de Jesus Pérez-Jiménez, Nataša
Jonoska, Jarko Kari, Jan van Leeuwen, Chang Li, Rossella Lupacchini, Joseé del
R. Millán, Pablo Moscato, Andrei Păun, Gheorghe Păun, Ion Petre, Vladimir
Rogojin, Ulrich Speidel, Susan Stepney, Karl Svozil, Carme Torras, Christof
Teuscher, Hiroshi Umeo.

The Programme Committee consisting of J.-P. Banâtre (Rennes, France),
S. Braunstein (York, UK), C.S. Calude (Auckland, New Zealand, Co-chair),
B. Cooper (Leeds, UK), D. Corne (Exeter, UK), M.J. Dinneen (Auckland, New
Zealand, Secretary), P. Érdi (Kalamazoo, MI, USA), E. Goles (Santiago, Chile),
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N. Jonoska (Tampa, FL, USA), J. Kari (Turku, Finland), J. van Leeuwen
(Utrecht, Netherlands), R. Lupacchini (Bologna, Italy), J. del R. Millan (Ispra,
Italy), Gh. Păun (Bucharest, Romania, and Seville, Spain, Co-chair), M.J. Pérez-
Jiménez (Seville, Spain), I. Petre (Turku, Finland), P. Prusinkiewicz (Calgary,
Canada), C. Teuscher (LANL, Los Alamos, USA), C. Torras (Barcelona, Spain),
H. Umeo (Osaka, Japan), S. Stepney (York, UK), K. Svozil (Vienna, Austria),
selected 17 papers (out of 36) to be presented as regular contributions.

We extend our thanks to all members of the Conference Committee, particu-
larly to L. Caves, E. Clark, K. Clegg, G. Danks, O. Leyser (Co-chair), F. Polack,
S. Stepney (Co-chair), J. Timmis, H. Turner, A. Weeks, J. Wright, for their
invaluable organizational work.

We thank the University of York and the Centre for Discrete Mathematics
of the University of Auckland for their technical support. The hospitality of our
hosts, the Department of Computer Science of the University of York, is much
appreciated.

The conference was partially supported by the Department of Biology of the
University of York, the Enterprise and Innovation office of of the University
of York, Microsoft Research, EPSRC, and the University consortium “White
Rose”; we extend to all our gratitude.

It is a great pleasure to acknowledge the fine cooperation with the Lecture
Notes in Computer Science team of Springer for producing this volume in time
for the conference.

June 2006 C.S. Calude
M.J. Dinneen

Gh. Păun
G. Rozenberg

S. Stepney
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Graph Machines and Their Applications to 
Computer-Aided Drug Design: A New Approach to 

Learning from Structured Data 

Aurélie Goulon1, Arthur Duprat1, 2, and Gérard Dreyfus1 

1 Laboratoire d’Électronique,  
2 Laboratoire de Chimie Organique, (CNRS UMR 7084) 

École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris 
(ESPCI-ParisTech) 

10 rue Vauquelin, 75005 PARIS, France 
Aurelie.Goulon@espci.fr, Arthur.Duprat@espci.fr, 

Gerard.Dreyfus@espci.fr 

Abstract. The recent developments of statistical learning focused on vector 
machines, which learn from examples that are described by vectors of features. 
However, there are many fields where structured data must be handled; there-
fore, it would be desirable to learn from examples described by graphs. Graph 
machines learn real numbers from graphs. Basically, for each graph, a separate 
learning machine is built, whose algebraic structure contains the same informa-
tion as the graph. We describe the training of such machines, and show that  
virtual leave-one-out, a powerful method for assessing the generalization  
capabilities of conventional vector machines, can be extended to graph ma-
chines. Academic examples are described, together with applications to the pre-
diction of pharmaceutical activities of molecules and to the classification of 
properties; the potential of graph machines for computer-aided drug design are 
highlighted. 

1   Introduction 

Whether neural networks still fall in the category of “unconventional” computational 
methods is a debatable question, since that technique is well understood and widely 
used at present; its advantages over conventional regression methods are well docu-
mented and mathematically proven. Neural networks are indeed conventional in that 
they learn from vector data: typically, the variables of the neural model are in the 
form of a vector of numbers. Therefore, before applying learning techniques to neural 
networks, or any other conventional learning machine (Support Vector Machine, 
polynomial, multilinear model, etc.), the available data must be turned into a vector of 
variables; the learning machine then performs a mapping of a set of input vectors to a 
set of output vectors. In most cases, the output is actually a scalar, so that the mapping 

is from n to , where n is the dimension of the input vectors. When modeling a 

physical process for instance, the factors that have an influence on the quantity to be 
modeled are known from prior analysis, so that the construction of the vector of  
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variables is straightforward, requiring simply normalization, and possibly variable se-
lection by statistical methods. 

In many cases of interest, however, encoding the data into a vector cannot be per-
formed without information loss. Such is the case whenever the information to be 
learnt from is structured, i.e. is naturally encoded into a graph. In scene analysis for 
instance, a scene can be encoded into a graph that describes the relationships between 
the different parts of the scene. In computer-aided drug design, the purpose of learn-
ing is a mapping of the space of molecules to the space of pharmaceutical activities; 
in most cases, the structure of the molecule explains, to a large extent, its activity. 
Since molecular structures are readily described by graphs, QSAR (Quantitative 
Structure-Activity Relationships) aims at mapping the space of the graphs of molecu-
lar structures to the space of molecular activities or properties. 

In the present paper, we describe an approach to learning that can be termed uncon-
ventional insofar as its purpose is a mapping of graphs to real numbers (or vectors) in-
stead of a mapping of vectors to real numbers. The latter quantities may be either real-
valued (graph regression) or binary (graph classification). The idea of learning from 
graphs (and generally structured data) can be traced back to the early days of machine 
learning, when Recursive Auto-Associative Memories (RAAMs) were designed for 
providing compact representations of trees [1]. It evolved subsequently to Labeled 
RAAMs [2], recursive networks [3], and graph machines (for a review of the develop-
ment of numerical machine-learning from structured data, see [4]).  

The first part of the paper is devoted to a description of graph machines and of 
some didactic, toy problems. It will also be shown that model selection methods that 
are proved to be efficient for conventional machine learning can be extended to graph 
machines. The second part of the paper will describe novel applications of graph ma-
chines to the prediction and classification of the properties or activities of molecules, 
a research area known as QSAR/QSPR (Quantitative Structure-Activity/Structure-
Property Relationships). We show that graph machines are particularly powerful in 
that area, because they avoid a major problem of that field: the design, computation 
and selection of molecular descriptors. 

2   Graph Machines 

We first provide the definitions and notations for handling acyclic graphs, and the 
construction of graph machines from general graphs (possibly cyclic). Academic 
problems are described as illustrations. It is shown that the training and model selec-
tion methods developed for vector machines can be extended to graph machines. 

2.1   Handling Directed Acyclic Graphs 

Definitions: we consider the mapping from a set of acyclic graphs G to a set of real-
valued numbers. 

For each acyclic graph Gi of G, a parameterized function gi n  is constructed, 

which is intended (i) to encode the structure of the graph [5], and (ii) to provide a pre-
diction of the quantity of interest, e.g. a property or an activity of the molecule, from 
Gi. It is constructed as follows. A parameterized function fθ (“node function”) is  
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associated to each node. θ denotes the vector of parameters of the node function. All 
nodes, except the root node, have the same node function fθ; those functions are com-
bined in such a way that gi has the same structure as graph Gi: if an edge from node k 
to node l exists in the graph, then the value of the node function associated to node k 
is a variable of the node function associated to node l. The root node may be assigned 
a different function, denoted by FΘ, where Θ is the vector of parameters of FΘ. If the 
node functions are neural networks, the gi’s are termed recursive neural networks [3]. 

Notations: the following notations are used throughout the paper. 
We denote by xj the (optional) vector of labels that provide information about node j 
of graph Gi. The size of the label vector is denoted by Xi; it is the same for all nodes 
of a given graph. Therefore, the parameterized function associated to Gi will be de-

noted as g
,

i
x
1
,x

2
,...,x

i
( ) , where νi is the number of nodes of graph Gi. If no spe-

cific information about the node is necessary, gθ,Θ
i  has no variable: its value depends 

only on the structure of graph Gi. 
We denote by zj the vector of variables of the node function fθ(zj) of the non-root 

node j of graph Gi. Denoting by dj the in-degree of non-root node j, and defining 

  
Mi = arg max

j
d j , the size of vector zj is equal to Di = Mi + Xi + 1. The vectors of vari-

ables of the node functions fθ(zj) are constructed as follows: for all j, the first compo-

nent 
  
z

j
0  is equal to 1 (the “bias” if fθ(zj) is a neural network, the constant term if fθ(zj) 

is an affine function); for node j, of in-degree dj, components z
j
1  to z

j

d j  are the values 

of the node functions assigned to the parent nodes of node j; if dj < Mi, components 

  
z

j

d j +1
 to 

 
z

j

Mi  are equal to zero; if Xi  0, components z
j

Mi +1  to z
j

Mi + Xi  are the labels of 

node j. 

We denote by yi the vector of variables of the node function F y
i

( ) of the root 

node of graph Gi. The size of yi is Δi = dr + Xr + 1, where dr denotes the in-degree of 

the root node and Xr the size of its vector of labels. y
i
0  is equal to 1 (bias), 

  
y

i
1  to 

 
y

i

dr  

are the values of the node functions assigned to the parent nodes of the root node, 

  
y

i

dr +1  to 
 
y

i

dr + Xr  are the labels assigned to the root node. 

As an example, Fig. 1 shows an acyclic graph G1 with maximum in-degree M1 = 2; 
the corresponding graph machine is: 

g
,

1
x
1
,x

2
,...,x

8( ) = F y
1( ) = F x

8
, f x

7
, f z

6( ) ,0( ) , f x
5
, f z

4( ) , f x
3
, f z

2( ) , f z
1( )( )( )( )

 
(1) 

If no information about the nodes is required by the problem at hand (X1 = 0), one 
has D = 3, and: 

z
1
= z

2
= z

4
= z

6
= 1 0 0( )

T

, z
3
= 1 f z

1( ) f z
2( )( )

T

,

z
5
= 1 f z

3( ) f z
4( )( )

T

, z
7
= 1 f z

6( ) 0( )
T

, y
1
= 1 f z

5( ) f z
7( )( )

T

.
 



4 A. Goulon, A. Duprat, and G. Dreyfus 

 

Fig. 1. An acyclic graph and its graph machine 

2.2   Cyclic Graphs 

Graph machines handle cyclic graphs and parallel edges. To that effect, the initial 
graph is preprocessed by deleting a number of edges equal to the number of cycles, 
and all parallel edges but one; moreover, a label is assigned to each node: it is equal to 
the degree of the node, thereby retaining the information about the original graph 
structure. Finally, a root node is chosen and the edges are assigned orientations, ac-
cording to an algorithm described in [6]. 

2.3   The Training of Graph Machines 

Graph machines are trained in the usual framework of empirical risk minimization. A 
cost function J(Θ,θ) is defined, and its minimum with respect to the parameters is 
sought, given the available training data. The cost function takes into account the dis-
crepancy between the predictions of the models and the observations present in the 
training set, and may include regularization terms, e.g.: 

J ,( ) = y
i
g

,

i( )
2

i=1

N

+
1

+
2

,
 

(2) 
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where N is the size of the training set, yi is the value of the i-th observation of the 
quantity to be modeled, and λ1 and λ2 are suitably chosen regularization constants. 

Since the parameter vectors θ and Θ must be identical within each function gi and 
across all those functions, one must resort to the so-called shared weight trick; the  
k-th component of the gradient of the cost function can be written as 

J ,( )

k

=
J i

ki=1

N

,

 

(3) 

where Ji is the contribution of example i to the cost function. We denote by 
 
nθk

i the 

number of occurrences of parameter θk in acyclic graph Gi; if the root is assigned the 

same parameterized function as the other nodes, then nθk

i  is equal to the number of 

nodes in graph Gi. The shared weight trick consists in setting 

J i

k

=
J i

k jj=1

n
k

i

,

 

(4) 

so that one has finally: 

J ,( )

k

=
J i

k jj=1

n
k

i

i=1

N

.

 

(5) 

Relation (5) is subsequently used for minimizing cost function (2) by any suitable 
gradient descent algorithm (Levenberg-Marquardt, BFGS, conjugate gradient, …). 

If functions fθ and FΘ are neural networks, the usual backpropagation algorithm 
may be conveniently used for computing the gradient; otherwise, one resorts to nu-
merical estimations thereof. 

2.4   Didactic Examples: Learning the Number of Nodes and the Number of 
Cycles of a Graph 

In the present section, two simple examples are provided, whose solutions can be 
worked out analytically because they are linear. In both cases, we consider the train-
ing set made of three graphs, shown on Fig. 2. 

Learning the number of nodes of a graph: first, assume that it is desired to learn, 
from examples, the number of nodes of a graph. Then the desired mapping is: G1→4; 
G2→8; G3→9. Moreover, generalization should be performed by using the node 
functions thus obtained in any other graph machine, i.e. to compute the number of 
nodes of any graph. 

The first step consists in constructing directed acyclic graphs (DAGs) from the ini-
tial graphs. The construction of the DAGs is obvious for G1 and G2. Since graph G3 
has four cycles, four edges must be deleted. Fig. 3 shows the directed acyclic graphs 
on which the graph machines will be based. 
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Fig. 2. A training set 

The node function fθ is sought in the family of affine functions f z( ) = j
z
j

j=0

D 1

,  

and FΘ is taken identical to fθ. Since the presence or absence of an edge is irrelevant 
for the computation of the number of nodes, no label is necessary: X1 = X2 = X3 = 0. 
The node functions being the same for all graphs of the training set, we take 

  
D = max

i
M

i
+ 1 = 5 . Since all edges are equivalent, one has θ1 = θ2 = θ3 = θ4 = θ. 

Therefore, there are actually two independent parameters only. 
The obvious solution is θ0 = θ = 1. For graph G1 for instance, one has: 

g
,

1
x
1
,x

2
,x

3
,x

4( ) = f 1, f z
1( ) , f z

2( ) , f z
3( ) ,0( ) = 0

+ 3
0
= 4 ,

 

where z
1
= z

2
= z

3
= 1 0 0 0 0( )

T

.  

 

Fig. 3. The acyclic graphs derived from the training set shown on Fig. 2 
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Similarly, one has, for graphG2: g ,

2
x
1
,x

2
,...,x

8( ) = 2 0
1+ +

2
+

3( ) = 8 ,  and, 

for graph G3: g ,

3
x
1
,x

2
,...,x

9( ) = 0
1+ 4 + 3

2
+

3( ) = 9 .  

Learning the number of cycles in a graph: similarly, consider learning, from 
examples, the number of cycles in a graph. 

By contrast to the previous example, the presence or absence of edges is highly 
relevant, so that each node must be labeled by its degree: X1 = X2 = X3 = 1. Therefore, 
one has 

  
D = max

i
M

i
+ 2 = 5 . 

fθ is sought in the family of affine functions f z( ) = j
z
j

j=0

D 1

,  and the root node is 

assigned a different affine function F y
i

( ). Therefore, the size of vectors yi is 

  
max

i
Δ

i
+ 1 = 7 , because the present problem requires an additional label, equal to 1, 

for the root nodes. 
An obvious solution to the problem is the following: θ0 = -1, θ1 = θ2 = θ3 = 1, 

θ4 = 1/2, Θ0 = -1, Θ1 = Θ2 = Θ3 = Θ4 = 1, Θ5 = 1/2, Θ6 = 1; the additional label as-
signed to the root node is equal to 1. 

Consider graph G1: fθ(z1) = fθ(z2) = fθ(z3) = -1/2, 

y
1
= 1 1 / 2 1 / 2 1 / 2 0 3 1( )

T

,  so that: FΘ(y1) = –1 – 3/2 + 3/2 + 1 = 0, 

as expected. 
Similarly, for graph G3, one has: fθ(z1) = fθ(z2) = 0, fθ(z4) = fθ(z6) = 1/2, fθ(z3) = 

f (z5) = 1/2, f (z7) = f (z8) = 1/2, y
3
= 1 1 / 2 1 / 2 1 / 2 1 / 2 4 1( )

T

, hence 

FΘ(y3) = 4. 

2.5   Some Nonlinear Learning Tasks 

The above two problems have linear solutions that can be obtained by inspection. In 
general, graph regression or classification problems cannot be solved in the frame-
work of linear models, so that one has to resort to training, as described above. The 
two examples described below are examples of graph machines being trained to learn 
graph properties as in the previous section, but the solutions are not linear. A database 
of 150 randomly generated graphs, featuring 2 to 15 nodes and 0 to 9 cycles, was cre-
ated. Model selection was performed by cross-validation. 

Learning the diameter of a graph: the diameter of a graph is the length of the 
shortest path between its most distant nodes: 

  
D = maxu,v d(u,v) , (6) 

where d(u, v) is the distance (the length of the shortest path) between nodes u and v. 
In the database under investigation, the index ranges from 1 to 9. That is clearly a 
non-linear property; therefore, the node function was a neural network; model selec-
tion resulted in a neural network with four hidden neurons. The root mean square  
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error on the training set is 0.36, and the root mean square validation error (10-fold 
cross-validation) is 0.53. Since the index is an integer ranging from 1 to 9, the predic-
tion is excellent given the complexity of the graphs. 

Learning the Wiener index of a graph: the Wiener index of a graph G is the sum of 
the distances between its vertices. That index was first defined by H. Wiener [7], in 
order to investigate the relationships between the structure of chemicals and their 
properties. It is defined as: 

W (G) =
1

2
d(u,v)

u,v

.

 
(7) 

In our database, that index ranges from 1 to 426.  
Model selection by 10-fold cross-validation resulted in a 4-hidden neuron node 

function, leading to a RMS validation error of 7.9. The scatter plot is shown on Fig. 4, 
illustrating the accuracy of the results obtained by training without having to compute 
any feature for describing the graph structure. The problem of feature design and  
selection, which is central in conventional machine learning with vector machines, is 
irrelevant for graph machines. This is very important for the applications described 
below. 

2.6   Model Selection 

Similarly to vector machines, usual model selection techniques such as hold-out, K-
fold cross-validation, leave-one-out, can be applied to recursive networks and to 
graph machines. In the present section, we show how virtual leave-one-out, a power- 
ful method for estimating the generalization capability of a vector machine, can be  
extended to graph machines. 

 

 

Fig. 4. Learning the Wiener index of graphs 
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Virtual leave-one-out for vector machines: leave-one-out is known to provide an 
unbiased estimation of the generalization error of a model [8]. However, it is very 
demanding in terms of computation time: it involves training N different models, 
where N is the number of examples; each model is trained from N – 1 examples, and 
the modeling error on the left-out example is computed; the estimator of the 
generalization error is 

1

N
R
i

i( )
2

i=1

N

,

 
(8) 

where 
 
R

i
− i  is the modeling error on example i when the latter is left out of the training 

set. 
Virtual leave-one-out is a very effective method for obtaining an approximation of 

the above estimate [9], [10]. It consists in training the candidate model with all exam-
ples, and computing the virtual leave-one-out score as: 

1

N

R
i

1 h
ii

2

i=1

N

,

 

(9) 

where Ri is the modeling error on example i when the latter is in the training set. hii is 
the tangent-plane leverage of example i: it is the i-th diagonal element of the hat  
matrix: 

H = Z Z
T
Z( )

1

Z
T .

 
(10) 

Z is the Jacobian matrix of the model, i.e. the matrix whose columns are the values of 
the partial derivative of the model gθ(x) with respect to its parameters, for the exam-
ples of the training set: 

z
ij
=

g x( )

j
x=x

i

.

 

(11) 

For models that are linear in their parameters, relation (9) is exact: it is known as 
the PRESS (Predicted REsidual Sum of Squares) statistics. For models that are not 
linear in their parameters, such as neural networks, it is a first-order approximation of 
the estimator. 

Leverages have the following properties: 

0 < h
ii

< 1

h
ii

i=1

N

= q
 (12) 

where q is the number of parameters of the model. Therefore, the leverage of example 
i can be viewed as the proportion of the parameters of the model that is devoted to  
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fitting example i. If hii is on the order of 1, the model has devoted a large fraction of 
its parameters to fitting example i, so that the model is probably strongly overfitted to 
that example. Therefore, virtual leave-one-out is a powerful tool for overfitting detec-
tion and model selection. 

Virtual leave-one-out for graph machines: in the present section, we show how 
virtual leave-one-out can be extended to graph machines. We give a simplified proof 
of the result, which provides a flavor of the full derivation. For simplicity, consider a 
model with a single parameter θ ; moreover, assume that, for all graph machines, the 
node function of the root node is identical to the node function of non-root nodes 

fθ (x). We denote by 
 
y

p
j  the measured value of the property of interest for example j: 

the modeling error on example j is R
j

= y
p
j − gθ

j ; we denote by R
j
− i  the modeling 

error on example j when example i has been withdrawn from the training set: 

 
R

j
− i = y

p
j − g

θ− i

j , where  θ
− i is the parameter computed from the training set from 

which example i has been withdrawn. Therefore, one has: 

 
R

j
− i = R

j
+ g

θ

j − g
θ− i

j . (13) 

Assuming that the withdrawal of example i from the training set does not affect the 
parameters of the model to a large extent, a first-order Taylor expansion of the model, 
in parameter space, can be performed: 

g
i

j
= g

j
+
g
j

i( ) .
 

(14) 

Therefore, one has: 

R
j

i
= R

j

g
j

i( ) .
 

(15) 

The first derivative of the model can similarly be expanded to: 

g
i

j

=
g
j

+

2
g
j

2

i( ) .
 

(16) 

As defined above, the least squares cost function (without regularization terms), is 

J ( ) = y
i
g
i( )
2

i=1

N

,
 

(17) 

which is minimum for θ. Therefore, one has 

  
0 =

∂ J θ( )
∂θ

= R
j

j

∂gθ
j

∂θ
, (18) 

and, similarly 
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0 =
J

i ( )
= R

j

i

j i

g
i

j

,
 

(19) 

where J-i is the cost function after training with the dataset from which i was with-
drawn. Substituting relations (15) and (16) into relation (19) gives: 

0 = R
j

g
j

j

R
i

g
i

g
j

2

j i

R
j

j i

2
g
j

2

i( ) .
 

(20) 

The first term on the right-hand side is equal to zero. Neglecting the second deriva-
tives with respect to the squared first derivatives (the usual Levenberg-Marquardt ap-
proximation), one gets, to first order: 

i( ) =
R
i

g
i

g
j

2

j i

.

 

(21) 

Substituting into (15) with j = i, one obtains: 

  
R

i
− i =

R
i

1− h
ii

, (22) 

with: 

h
ii
=

gi
2

g j
2

j

.

 

(23) 

The above relation is similar to relation (10), which, for a single-parameter model,  
reduces to: 

h
ii
=

g x( )

x=x
i

2

g x( )

x=x
j

2

j

. (24) 

Thus, virtual leave-one-out can provide an estimate of the generalization error of 
graph machines, in much the same way as for conventional vector machines: the  



12 A. Goulon, A. Duprat, and G. Dreyfus 

matrix whose general term is zij =
g
i

j

 plays exactly the same role as the Jacobian 

matrix Z (of general term z
ij
=

g x( )

j
x=x

i

)  for conventional vector machines. In 

the case of neural networks, it can easily be computed by backpropagating an error 
equal to ½, after the completion of training. 

3   Graph Machines for the Prediction of Properties and/or 
Activities of Molecules 

The prediction of the physico-chemical properties and pharmaceutical activities of 
molecules is a critical task in the drug industry for shortening the development times 
and costs. Typically, one synthesized molecule out of 10,000 becomes a commercial 
drug, and the development time of a new drug is approximately 10 years. Therefore, 
predicting the activity of a hitherto non-existent molecule may lead to tremendous 
savings in terms of development time and cost. Hence, over the past few years, 
QSPR/QSAR has become a major field of research in the chemical industry. 

In a typical QSAR/QSPR scenario, a database of measured properties or activities 
of molecules is available, and it is desired to infer, from those data, the prop-
erty/activity of molecules that have not yet been synthesized. Therefore, machine 
learning is a natural context for solving such problems. Linear, polynomial, neural, 
and SVM regression have been used extensively. For all such techniques, the design 
and the selection of relevant features, for the prediction of a given activity, are a ma-
jor problem. 

In the following, we show that graph machines solve that problem by exempting 
the model designer from finding and computing elaborate features, because the struc-
ture of the molecule is embodied into the learning machine itself. We show that, for 
the problems described here as well as for other problems, graph machines provide 
predictions that are at least as good as (and generally better than) predictions made by 
conventional machine learning, without the need for designing, computing and select-
ing features.  

3.1   Encoding the Molecules 

Molecules are usually described in databases in a representation called SMILES 
(Simplified Molecular Input Line Entry System), which provides a description of the 
graph structure of the molecule as a character string. In the applications described 

here, the functions 
 
gθ

i  were generated from the SMILES files of the molecules by the 

following procedure: the molecules, described by these files, were converted into  
labeled graphs by the association of each non-hydrogen atom to a node, and each 
bond to an edge. The nodes were also assigned labels describing the atoms they were 
related to (e.g. their nature, their degree or stereoisomery …). Then, the adjacency 
matrices associated to those labeled graphs were generated. In the subsequent step, 
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the matrices were cast into a canonical form, by an algorithm that ranks the nodes ac-
cording to criteria such as their degree, the fact that they belong to a cycle… [6]. This 
canonical form allowed the choice of the root nodes, and the conversion of the graphs 
into directed acyclic graphs. Fig. 5 illustrates the processing of a molecule from its 
SMILES representation into a directed acyclic graph. 

Graph machines were then built for each graph of the data set; node functions 
were feedforward neural networks with a single layer of hidden neurons whose com-
plexity (i.e. the number of neurons in the hidden layer) was controlled by cross-
validation. The graph machines were then trained, with the shared weight condition, 
using the software package NeuroOne 1, which computes the gradient of the cost 
function by backpropagation and minimizes the cost function by the Levenberg-
Marquardt algorithm. 

 

 

Fig. 5. Encoding a molecule into a graph machine 

3.2   Predicting the Boiling Points of Halogenated Hydrocarbons 

The volatility of halogenated hydrocarbons is an important property, because those 
compounds are widely used in the industry, for example as solvents, anaesthetics, 
blowing agents, and end up in the environment, where they can damage the ozone 
layer or be greenhouse gases. The volatility of a molecule can be assessed by its boil-
ing point, a property measured only for a small proportion of possible halogenated 
hydrocarbons.  

We studied a data set of 543 haloalkanes, whose boiling points were previously 
predicted by Multi Linear Regression (MLR) [11] [12]. This regression required the 
computation of numerous molecular descriptors, including arithmetic descriptors, 

                                                           
1 NeuroOne is a product of Netral S.A. (http://www.netral.com) 

, 
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topological indices, geometrical indices, and counts of substructures and fragments. 
The best feature subset was then selected, and generally included 6 or 7 descriptors. 
To provide a comparison with the results obtained by this method, we used the same 
training and test sets as Rücker et al. [12]. They feature 507 and 36 haloalkanes re-
spectively, whose boiling points range from -128 °C to 249 °C. 

In order to select the number of neurons required by the complexity of the prob-
lem, we first performed 10-fold cross-validation on the 507 examples of the training 
set. The results suggested the use of neural networks with 4 hidden neurons. 

We then trained the selected graph machines, and predicted the boiling points of the 
test set molecules. The results of this study are shown in Table 1, where they are com-
pared to the results obtained by Rücker et al. [12] on the same sets, using a 7-regressor 
MLR model. The predictions of the model on the test set are also displayed on Fig. 6. 

Table 1. Prediction of the boiling points of haloalkanes by multi-linear regression and graph 
machines 

MLR (7-descriptor) 4N-GM

RMSE (°C) R2 RMSE (°C) R2

Training 6.607 0.9888 3.92 0.9960

10-fold CV - - 4.70 0.9942

Test 7.44 0.9859 5.07 0.9921
 

 

Fig. 6. Scatter plot for the prediction of the boiling point of 36 haloalkanes 
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The above results show that graph machines are able to model the boiling points of 
haloalkanes very well, without requiring the computation of any descriptor. Further-
more, this modeling task illustrates the fact that the design of the learning machine 
from the structure of the molecules avoids the loss of information caused by the selec-
tion of descriptors. Actually, Rücker et al. [12] stress the fact that the prediction of the 
boiling points of fluoroalkanes with their model is not satisfactory, which is presuma-
bly due to the lack of a descriptor taking into account the strong dipole interactions. 
The removal of 7 of these compounds decreased the training error of MLR regression 
by 0.56 °C (from 6.607 to 6.049 °C). By contrast, in the case of graph machines, the 
errors on those examples are not particularly high, and their removal from the data-
base decreased the training error by 0.08 °C only (from 3.92 to 3.84 °C). 

3.3   Predicting the Anti-HIV Activity of TIBO Derivatives 

TIBO (Tetrahydroimidazobenzodiazepinone) derivatives are a family of chemicals 
with a potential anti-HIV activity. They belong to the category of non-nucleoside  
inhibitors, which block the reverse transcriptase of the retrovirus and prevent its du-
plication. We studied a data set of 73 of those compounds, whose activity was previ-
ously modeled with several QSAR methods, including conventional neural networks 
[13], multi-linear regression [14], comparative molecular field analysis (CoMFA) 
[15], and the substructural molecular fragments (SMF) method [16]. The latter ap-
proach is based on the representation of the molecules with graphs, which are split 
into fragments, whose contribution to the modeled activity is then computed by linear 
or non-linear regression. Those fragments are either atom-bond sequences, or "aug-
mented atoms", defined as atoms with their nearest neighbours. 

In order to compare the prediction abilities of graph machines to the performances 
of the SMF method [16], the data set was split into a training and a test set of 66 and 7 
examples respectively, exactly as in [16]. The activity is expressed as log(1/IC50), 
where IC50 is the concentration leading to the inhibition of 50% of the HIV-1 reverse 
transcriptase enzyme. Since some compounds of the set are stereoisomers, a label that 
described the enantiomery (R or S) of the atoms was added when necessary. 

We first performed 6-fold cross-validation on the training set with node functions 
having up to five hidden neurons to select the complexity of the model. Three hidden 
neurons provided the best cross-validation estimate of the generalization. The results 
obtained with this model are reported in Table 2 and on Fig. 7. 

Table 2. Prediction of the activity of TIBO derivatives by different methods 

SMF 3N GM

RMSE R2 RMSE R2

Training set 0.89 0.854 0.28 0.9901

Test set 0.51 0.943 0.45 0.9255
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Since the accuracies of the experimental values are not known, the prediction er-
rors cannot be compared to the measurement errors. However, this study demonstrates 
again that graph machines compare favourably with other methods, without the re-
quirement of computing descriptors.  This task also illustrates another advantage of 
graph machines on some other methods: Solov'ev et al. [16] had to remove several 
compounds from their original set because they contained "rare" fragments, whereas 
this problem does not occur with graph machines, insofar as the molecules of the test 
set do not require labels (atom types or degrees for example) that are not present in 
the training set. 

Additional results on the prediction of the toxicity of phenols, the anti-HIV activity 
of HEPT analogues, and the carcinogenicity of molecules, are described in [17]. 

 

 

Fig. 7. Scatter plot of the prediction of the activity of TIBO derivatives 

4   Graph Machines for Classification: Discriminating Aromatic 
From Non-aromatic Molecules 

All the above examples are regression problems, in which a mapping is performed 
from graphs to real numbers. Graph machines can also perform classification, i.e. 
mappings from graphs to {-1, +1}. As an illustration, we show that discrimination  
between aromatic molecules (i.e. molecules that contain an aromatic cycle) and non-
aromatic molecules can be performed. A cycle is aromatic when it fulfils several cri-
teria: it must be planar, and have a set of conjugated π orbitals, thereby creating a  
delocalized π molecular orbital system. Furthermore, there must be 4n + 2 electrons in 
this system, where n is an integer. 
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A set of 321 molecules was investigated, with various functional groups taken 
from [18]; it was divided into a training and a test set of 274 and 47 examples respec-
tively. The proportion of molecules containing at least one aromatic cycle is shown on 
Fig. 8. 

To select the number of hidden neurons required by this problem, 10-fold cross-
validation was performed on the set of 273 examples. Table 3 reports the percentage 
of correct classification obtained with three and four hidden neurons.  

The cross-validation error with the graph machines with 4 hidden neurons is due to 
a single misclassified example: the pipamperone, shown on Fig. 9. That error can be 
traced to the fact that the main part of the molecule is non-aromatic. 

 

 

Fig. 8. Distribution of the molecules including at least one aromatic cycle in the data sets 

Table 3. 10-fold cross-validation results for the prediction of the aromaticity 

Correct classification
(training)

Correct classification
(10-fold CV)

GM 3N 100% 100%

GM 4N 100% 99.7%  

H2N

N
N

F

O

O

 

Fig. 9. Structure of the pipamperone, misclassified with 10-fold cross-validation 

No example from the test set was misclassified by the graph machines with 3 hid-
den neurons, which illustrates the ability of graph machines to efficiently encode the 
structures of the graphs, thus to retain structure-related properties such as aromaticity. 
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5   Conclusions 

A computational method that allows regression and classification on graphs has been 
described. Interestingly, it illustrates two principles that turn out to be very useful for 
solving real-life machine-learning tasks: (i) if a representation of the data for a given 
problem cannot be found “by hand”, it may be advantageous to learn it; (ii) always 
embed as much prior information as possible into the structure of the learning ma-
chine. In agreement with statement (i), a representation of the graph evolves during 
training, as described in [5]; in agreement with statement (ii), the information about 
the structure of the data is embedded in the structure of the graph machine itself. 

Model selection for recursive networks and graph machines used to be performed 
by conventional cross-validation, hold-out or leave-one-out; we have shown, in the 
present paper, that the powerful technique of virtual leave-one-out extends to recur-
sive networks or graph machines in a relatively straightforward fashion; the full deri-
vation of the results, and illustrations, will be provided in a forthcoming paper. 

Applications of graph machines to computer-aided drug design have been de-
scribed. The major asset of graph machines is their ability to make efficient predic-
tions while exempting the model designer from the design, computation and selection 
of descriptors, which is recognized to be a major burden in QSAR/QSPR tasks. It 
should be noted, however, that, if the graph structure of the molecule is not sufficient 
for accurate prediction, descriptors could indeed be implemented as inputs to graph 
machines, in the form of labels for the nodes. 

Scalability is an issue that should be investigated in a principled way. If the method 
is to be used for scene or text analysis for instance, very large corpuses must be han-
dled. Experimental planning methods, allowing the model designer to use only the 
most informative data, have recently become available for nonlinear models in con-
ventional machine learning. The extension of those techniques to graph machines 
should be investigated. 
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1 Cognitive Control

Human behavior is remarkably flexible. An individual who drives the same route
to work each day easily adjusts for a traffic jam or to pick up lunch. Any theory
of human cognition must explain not only routine behavior, but how behavior
is flexibly modulated by the current environment and goals. In this extended
abstract, we discuss this ability, often referred to as cognitive control.

In a psychological laboratory, a task that has been used to study cognitive
control is the Stroop phenomenon. Individuals are asked to name the color in
which a list of words is printed. This task is straightforward, unless the to-
be-ignored words are color names, such as the word yellow printed in red ink.
The correct response is “red,” but individuals are inclined to respond “yellow.”
The explanation for this phenomenon is straightforward: individuals have much
practice reading words but have little practice in naming colors. As a result,
word reading is more automatic than color naming. What is particularly inter-
esting about this phenomenon is that individuals can override the predominant
response—reading the word—and produce the task-relevant response—naming
the color.

Cognitive control is required whenever an individual performs novel activities,
either because the task is novel or because the stimuli, responses, or task envi-
ronment is unfamiliar. Aspects of cognitive control include: the deployment of
visual attention, the selection of responses, the construction of arbitrary associ-
ations between stimuli and responses, the determination of which brain systems
should process a stimulus, and the use of working memory to subserve ongoing
processing. The functional organization of the brain, sometimes referred to as
the cognitive architecture, is extremely flexible. The role of cognitive control is
to reconfigure this general-purpose architecture to perform a specific task. But
cognitive control involves a secondary, more subtle, ability—that of fine tuning
the operation of the cognitive architecture to the environment. For example,
consider searching for a key in a bowl of coins versus searching for a key on a
black leather couch. In the former case, the environment dictates that the most
relevant feature is the size or shape of the key, whereas in the latter case, the
most relevant feature is the metallic luster of the key.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 20–25, 2006.
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2 Sequential Dependencies

The fine tuning of cognitive control to the structure of the environment is evi-
denced by sequential dependencies in human behavior. A sequential dependency
is an influence of one incidental experience on subsequent experience. Sequen-
tial dependencies arise constantly in naturalistic settings. Individuals tend to
perform the same activities repeatedly throughout their daily lives: driving to
the office, preparing dinner, arguing with a spouse, searching for information
on the web, etc. Sequential dependencies are also studied in a constrained en-
vironment via psychological experiments that require individuals to perform a
task repeatedly or perform a series of tasks, and performing one task trial influ-
ences behavior on subsequent trials. Measures of behavior are diverse, including
response latency, accuracy, type of errors produced, and interpretation of am-
biguous stimuli.

What is the relationship between cognitive control and sequential dependen-
cies? Sequential dependencies are a reflection of the effects of control processes.
That is, cognitive control modulates information processing and internal rep-
resentations, these modulations yield sequential dependencies. As a result, un-
derstanding sequential dependencies—fine tuning of behavior that follows each
experience—should offer an insight into the operation of cognitive control—the
tuning required to achieve flexible, adaptive behavior.

To illustrate a sequential dependency, consider the three columns of addition
problems in Table 1. The first column is a list of easy problems; individuals
are quick and accurate in naming the sum. The second column is a list of hard
problems; individuals are slower and less accurate in responding. The third col-
umn contains a mixture of easy and hard problems. If sequential dependencies
arise in repeatedly naming the sums, then the response time or accuracy to an
easy problem will depend on the preceding context, i.e., whether it appears in
an easy or mixed list; similarly, performance on a hard problem will depend on
whether it appears in a hard or mixed list. Exactly this sort of dependency has
been observed [4]: responses to a hard problem are faster but less accurate in a
mixed list than in a pure list; similarly, responses to an easy problem are slower
and more accurate in a mixed list than in a pure list of easy trials. Essentially,
the presence of recent easy problems causes response-initiation processes to treat
a hard problem as if it were easier, speeding up responses but causing them to be

Table 1. Three Series of Addition Problems

Easy List Hard List Mixed List

3 + 2 9 + 4 3 + 2
1 + 4 7 + 6 7 + 6
10 + 7 8 + 6 10 + 7
5 + 5 6 + 13 6 + 13
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more error prone; the reverse effect occurs for easy problems in the presence of
recent hard problems.

Sequential dependencies reflect cortical adaptation operating on the time scale
of seconds, not—as one usually imagines when discussing learning—days or
weeks. Sequential dependencies are robust and nearly ubiquitous across a wide
range of experimental tasks, spanning all components of the cognitive architec-
ture, including perception, attention, language, stimulus-response mapping, and
response initiation [8]. Sequential dependencies arise in a variety of experimental
paradigms. The aspect of the stimulus that produces the dependency ranges from
the concrete, such as color or identity, to the abstract, such as cue validity, item
difficulty, or syntax of language. Most sequential dependencies are fairly short
lived, lasting roughly five intervening trials, but some varieties span hundreds of
trials and weeks of passing time.

3 Rational Models of Cognition

We have proposed and evaluated a variety of cognitive models to explain se-
quential dependencies. A cognitive model captures essential aspects of cognitive
function, matches human strengths and weaknesses, and can replicate patterns
of data observed in human experimental studies. In contrast to Artificial Intel-
ligence systems, cognitive models attempt to perform perceptual and cognitive
tasks in the same way that people do.

We focus on a subclass of cognitive models that adopt a rational perspective
[1], which views cognition as being optimized with respect to current goals and
the statistical structure of the environment. Rational analysis has been used to
understand many cognitive domains, including long-term memory [1], concept
learning [9], language learning [2] [10], and low-level perceptual integration [11].
A rational account of some cognitive process does not imply the rationality of
human reasoning and decision making, which is built upon many elemental cog-
nitive processes, nor does a rational account imply that the cognitive process
is ideal in an absolute sense. The notion of rationality is considered in light
of limitations on processing hardware or knowledge state. In a successful ra-
tional account, a small set of assumptions concerning hardware and knowledge
limitations, along with the assumption of rationality (i.e., that inference and per-
formance is optimal subject to these limitations), leads to parsimonious, elegant
accounts of data and strong predictions.

From a behavioral perspective, the natural goal of optimization is to make
performance more fluid and efficient—concretely, to minimize reaction time or to
maximize accuracy, or some trade-off between the two. A rational model must be
sensitive to the statistical structure of the environment in which it is operating,
because the structure of the environment can be exploited to make behavior
more efficient. Optimality of behavior is possible only when the probabilities
of various environmental states and outcomes can be estimated. As a result,
rational models tend to adopt a probabilistic framework.
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4 Domains Studied

We have constructed rational models to understand cognition and predict be-
havior across a range of tasks. We briefly summarize specific models that we
have investigated, to perform the following tasks: visual search (locating a visual
target in a cluttered display), categorization (labeling an item as belonging to
one of a discrete set of classes), and speeded discrimination (making a rapid de-
cision to a visual stimulus). In all three models, we account for behavior via the
assumption that a predictive model of the environment is learned and updated
over the course of experience, and control processes use this model to optimze
future performance.

4.1 Sequential Effects Involving Visual Search

In a visual search task, individuals are asked to locate a target item in a clut-
tered display of distractor items, such as finding a red circle among green circles
and red squares. Visual search shows strong sequential effects. The robust find-
ing is that repetition of features of recent trials (e.g., target color) facilitates
performance.

We view this facilitation as an adaptation to the statistical structure of the en-
vironment [6]. We suggest that control processes construct a probabilistic model
of the environment that is updated after each trial to reflect the current trial. At-
tentional control then operates so as to optimize performance for the more likely
states of the environment. For example, if a target appeared in the center of a
display for several trials in a row, then an environmental models would predict
that with high probability, the target will appear in the center again, and will
tune visual search to be particularly efficient for a target in the center. We cast
the environment model as a Bayes net, and make strong claims about how task
instructions determine the structure (conditional dependencies) of the Bayes net.
We obtain parsimonious explanations for data from four different experiments.
Further, our model provides a rational explanation for why the influence of past
experience decays so rapidly—in under a half dozen trials.

4.2 Sequential Effects Involving Categorization

Categorization is a central activity of human cognition. Individuals continually
make decisions about characteristics of objects and other individuals: Is the fruit
ripe? Does your friend seem unhappy? Is your car tire flat?

When an individual is asked to categorize a series of items, sequential effects
arise: categorization of one item influences category decisions for subsequent
items. Specifically, when experimental subjects are shown an exemplar of some
target category, the category prototype appears to be pulled toward the exem-
plar, and the prototypes of all nontarget categories appear to be pushed away.
These push and pull effects diminish with experience, and likely reflect long-term
learning of category boundaries.

We propose a model to explain categorization phenomena that assumes the
objective of category learning is to maximize the posterior probability of the



24 M.C. Mozer

category given the exemplar [7]. Each category is encoded as a Gaussian density
in feature space, and categorization involves computing category posteriors given
an exemplar. Also essential to a complete account of the experimental data is an
assumption of prior knowledge of category structure. Specifically, if the categories
lie on a continuum (e.g., “small”, “medium”, and “large”), the structure built
into the model includes ordinal information about the categories.

4.3 Sequential Effects Involving Speeded Discrimination

Consider a simple speeded discrimination task in which individuals are asked to
classify a sequence of stimuli [3]. The stimuli are letters of the alphabet, A-Z,
presented in rapid succession, and individuals are asked to press one response
key if the letter is an X or another response key for any letter other than X (as a
shorthand, we will refer to the alternative responses as X and Y). Even in a simple
cognitive task like this, sequential effects arise from the relative frequency of X
and Y. Response conflict arises when the two stimulus classes are unbalanced in
frequency, resulting in more errors and slower reaction times. For example, when
X’s are frequent but Y is presented, individuals are predisposed toward producing
X, and this predisposition must be overcome by the perceptual evidence from
Y. Cognitive control is presumed to be required in situations involving response
conflict.

How do control processes modulate behavior based on the relative class fre-
quencies? We explain performance from a rational perspective that casts the
goal of individuals as minimizing a cost that depends both on error rate and re-
action time [5]. With two additional assumptions of rationality—that class prior
probabilities are accurately estimated and that inference is optimal subject to
limitations on rate of information transmission—we obtain a good fit to overall
RT and error data, as well as trial-by-trial variations in performance.

5 Conclusions

Theories in cognitive science often hand the problem of cognitive control to an
unspecified homunculus. Other theories consider cognitive control in terms of
a central, unitary component of the cognitive architecture whose role is to di-
rect processing in lower components of the architecture. In contrast, we view
cognitive control as a collection of simple, specialized mechanisms, and the ap-
pearance of control emerges from this collection. We summarized three such
mechanisms in this abstract: one that determines how to allocate attention and
visual processing resources, one that determines where to draw boundaries in
dividing our continuous world into discrete categories, and one that determines
the predisposition to produce specific responses.

The central claim of all of our accounts is that a predictive model of the
environment is constructed, and this model is used to optimize performance
on subsequent trials. We view sequential dependencies as reflecting continual
adaptation to the ongoing stream of experience, wherein each sensory and mo-
tor experience can affect subsequent behavior. Sequential dependencies suggest
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that learning should be understood not only in terms of changes that occur on
the time scale of hours or days, but also in terms of changes that occur from
individual incidental experiences that occur on the scale of seconds.
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Biochemistry is messy. It’s a miracle any of it works. And yet it does. The
wonderful diversity and amazing talents of living things derive from the bio-
chemical processes that copy genetic information and use that information as
a program to construct a sophisticated organization of matter and behaviour
– reliably and robustly overcoming insult after insult from the environment. In
this talk I will first discuss how known techniques for fault-tolerant computing,
such as von Neumann’s multiplexing technique for digital circuits, can be trans-
lated to the biochemical context. I will then discuss fault-tolerance in molecular
self-assembly, which requires new techniques. Using a model of algorithmic self-
assembly, a generalization of crystal growth processes, I will present techniques
for controlling the nucleation of self-assembly, for reducing errors during growth,
and for recovering after gross damage or fragmentation.
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Abstract. This work concerns the computational complexity of a model
of computation that is inspired by optical computers. The model is called
the continuous space machine and operates in discrete timesteps over a
number of two-dimensional images of fixed size and arbitrary spatial res-
olution. The (constant time) operations on images include Fourier trans-
formation, multiplication, addition, thresholding, copying and scaling.
We survey some of the work to date on the continuous space machine.
This includes a characterisation of the power of an important discrete
restriction of the model. Parallel time corresponds, within a polynomial,
to sequential space on Turing machines, thus satisfying the parallel com-
putation thesis. A characterisation of the complexity class NC in terms
of the model is also given. Thus the model has computational power that
is (polynomially) equivalent to that of many well-known parallel models.
Such characterisations give a method to translate parallel algorithms to
optical algorithms and facilitate the application of the complexity the-
ory toolbox to optical computers. In the present work we improve on
these results. Specifically we tighten a lower bound and present some
new resource trade-offs.

1 Introduction

Over the years, optical computers were designed and built to emulate conven-
tional microprocessors (digital optical computing), and for image processing over
continuous wavefronts (analog optical computing). Here we are interested in the
latter class: optical computers that store data as images. Numerous physical
implementations exist and example applications include fast pattern recognition
and matrix-vector algebra [9,24]. There have been much resources devoted to
designs, implementations and algorithms for such optical information processing
architectures (for example see [1,4,6,9,12,13,14,15,22,24,31] and their references).
However the computational complexity theory of optical computers1 has received
1 That is, finding lower and upper bounds on computational power in terms of known

complexity classes.
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relatively little attention when compared with other nature-insired computing
paradigms. Some authors have even complained about the lack of suitable mod-
els [6,13].

We investigate the computational complexity of a model of computation
that is inspired by such optical computers. The model is relatively new and is
called the continuous space machine (CSM) [16,17,18,26,27,28,29,30]. The model
was originally proposed by Naughton [16,17]. The CSM computes in discrete
timesteps over a number of two-dimensional images of fixed size and arbitrary
spatial resolution. The data and program are stored as images. The (constant
time) operations on images include Fourier transformation, multiplication, addi-
tion, thresholding, copying and scaling. We analyse the model in terms of seven
complexity measures inspired by real-world resources.

Subsequent to the original [17] CSM definition, Naughton [16] showed that
the CSM (sequentially) simulates Turing machines, with a constant factor slow-
down in time, thus giving a lower bound on its computational power. Later it
was shown [18] that the model could simulate Type-2 Turing machines [25]. It
was also shown that the CSM definition was perhaps too general as there is an
ω-language that is Type-2 (and Turing machine) undecidable, but is CSM de-
cidable [18], and furthermore any language is decided in finite time (and infinite
space) [30]. In this paper we mostly focus on computational complexity results
for a restricted CSM called the C2-CSM. Section 2 surveys some of the work to
date on the model. This includes an analysis of complexity resources relevant to
the CSM. Optical information processing is a highly parallel form of computing
and we have made this intuition more concrete by relating the C2-CSM to par-
allel complexity theory. We discuss characterisations of C2-CSM computational
power in terms of sequential space complexity classes and NC. Section 3 presents
a new result that improves the lower bound for C2-CSM simulation of sequential
space.

2 CSM and C2-CSM

We begin by describing the model in its most general sense, this brief overview
is not intended to be complete and more details are to be found in [26].

2.1 CSM

A complex-valued image (or simply, image) is a function f : [0, 1)× [0, 1) → C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N+ = {1, 2, 3, . . .}, N = N+ ∪ {0}, and for a given CSM M
let N be a countable set of images that encode M ’s addresses. Additionally, for a
given M there is an address encoding function E : N → N such that E is Turing
machine decidable, under some reasonable representation of images as words. An
address is an element of N× N.
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Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P,O), where
E : N → N is the address encoding function,
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a and b, where a �= b,
I and O are finite sets of input and output addresses, respectively,
P = {(ζ1, p1ξ

, p1η), . . . , (ζr, prξ
, prη)} are the r programming symbols ζj and

their addresses where ζj ∈ ({h, v, ∗, ·,+, ρ, st, ld, br, hlt} ∪ N ) ⊂ I.

Each address is an element from {0, . . . , Ξ−1}×{0, . . . ,Y−1} where Ξ,Y ∈ N+.

Addresses whose contents are not specified by P in a CSM definition are assumed
to contain the constant image f(x, y) = 0. We interpret this definition to mean
that M is (initially) defined on a grid of images bounded by the constants Ξ
and Y, in the horizontal and vertical directions respectively. The grid of images
may grow in size as the computation progresses.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
located at the lower left-hand corner of the grid. The images have the same
orientation as the grid. For example the value f(0, 0) is located at the lower
left-hand corner of the image f .

In Definition 1 the tuple P specifies the CSM program using programming
symbol images ζj that are from the (low-level) CSM programing language [26,30].
We refrain from giving a description of this programming language and instead
describe a less cumbersome high-level language [26]. Figure 1 gives the basic
instructions of this high-level language. The copy instruction is illustrated in
Figure 3. There are also if/else and while control ow instructions with con-
ditions of the form (fψ == fφ) where fψ and fφ are binary symbol images (see
Figures 2(a) and 2(b)).

Address sta is the start location for the program so the programmer should
write the first program instruction at sta. Addresses a and b define special im-
ages that are frequently used by some program instructions. The function E
is specified by the programmer and is used to map addresses to image pairs.
This enables the programmer to choose her own address encoding scheme. We
typically don’t want E to hide complicated behaviour thus the computational
power of this function should be somewhat restricted. For example we put such
a restriction on E in Definition 7. Configurations are defined in a straightforward
way as a tuple 〈c, e〉 where c is an address called the control and e represents
the grid contents.

2.2 Complexity Measures

Next we define some CSM complexity measures. All resource bounding functions
map from N into N and are assumed to have the usual properties [2]. Logarithms
are to the base 2.

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

lf
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h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform of i1.
v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.
∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.
··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.
+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper

amplitude threshold images, respectively. Place result at i2.
[ξ′

1, ξ
′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2] : copy the rectangle of images whose bottom left-hand

address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′

1, η
′
1) and whose

top right-hand address is (ξ′
2, η

′
2). See illustration in Figure 3.

Fig. 1. CSM high-level programming language instructions. In these instructions
i, zl, zu ∈ N × N are image addresses and ξ, η ∈ N. The control flow instructions are
described in the main text.

(a) (b) (c) (d) (e) (f)

Fig. 2. Representing binary data. The shaded areas denote value 1 and the white areas
denote value 0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or
row) image representation of the word 1011, (d) column image representation of 1011,
(e) 3× 4 matrix image, (e) binary stack image representation of 1101. Dashed lines are
for illustration purposes only.

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N × N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

We also use complexity measures called amplRes, phaseRes and freq [26,30].
Roughly speaking, the amplRes of a CSM M is the number of discrete, evenly
spaced, amplitude values per unit amplitude of the complex numbers in the range
of M ’s images. The phaseRes of M is the total number (per 2π) of discrete
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ξ ξ + 3

η
i

Fig. 3. Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a
single image that is denoted i

evenly spaced phase values in the range of M ’s images. freq is a measure of the
optical frequency of M ’s images [30].

Often we wish to make analogies between space on some well-known model
and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

2.3 Representing Data as Images

There are many ways to represent data as images. Here we mention some data
representations that are commonly used and moreover are used in Section 3.
Figures 2(a) and 2(b) are the binary symbol image representations of 1 and 0
respectively. These images have an everywhere constant value of 1 and 0 respec-
tively, and both have spatialRes of 1. The row and column image represen-
tations of the word 1011 are respectively given in Figures 2(c) and 2(d). These
row and column images both have spatialRes of 4. In the matrix image repre-
sentation in Figure 2(e), the first matrix element is represented at the top left
corner and elements are ordered in the usual matrix way. This 3×4 matrix image
has spatialRes of 12. Finally the binary stack image representation, which has
exponential spatialRes of 16, is given in Figure 2(f). Section 3.1 discusses the
manipulation of stack images.

Figure 3 shows how we might form a list image by copying four images to
one in a single timestep. All of the above mentioned images have dyRange,
amplRes and phaseRes of 1.

2.4 Worst Case CSM Resource Usage

For the case of sequential computation it is usually obvious how the execution of a
single operation will effect resource usage. In parallel models, execution of a single
operation can lead to large growth in a single timestep. Characterising resource
growth is useful for proving upper bounds on power and choosing reasonable
model restrictions.

We investigated the growth of complexity resources over time, with respect to
CSM operations [26,28]. As expected, under certain operations some measures
do not grow at all. Others grow at rates comparable to massively parallel models.
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Table 1. CSM resource usage after one timestep. For a given operation and complexity
measure pair, the relevant table entry defines the worst case CSM resource usage at
time T + 1, in terms of the resources used at time T . At time T we have grid = GT ,
spatialRes = Rs,T , amplRes = Ra,T , dyRange = Rd,T , phaseRes = Rp,T and
freq = νT .

grid spatialRes amplRes dyRange phaseRes freq
h GT ∞ ∞ ∞ ∞ ∞
v GT ∞ ∞ ∞ ∞ ∞
∗ GT Rs,T Ra,T Rd,T Rp,T νT

· GT Rs,T (Ra,T )2 (Rd,T )2 Rp,T νT

+ GT Rs,T ∞ 2Rd,T ∞ νT

ρ unbounded Rs,T Ra,T Rd,T Rp,T νT

st unbounded Rs,T Ra,T Rd,T Rp,T νT

ld unbounded unbounded Ra,T Rd,T Rp,T unbounded
br GT Rs,T Ra,T Rd,T Rp,T νT

hlt GT Rs,T Ra,T Rd,T Rp,T νT

By allowing operations like the Fourier transform we are mixing the continuous
and discrete worlds, hence some measures grow to infinity in one timestep. This
gave strong motivation for CSM restrictions.

Table 1 summarises these results; the table defines the value of a complexity
measure after execution of an operation (at time T + 1). The complexity of
a configuration at time T + 1 is at least the value it was at time T , since
complexity functions are nondecreasing. Our definition of time assigns unit time
cost to each operation, hence we do not have a time column. Some entries are
immediate from the complexity measure definitions, for others proofs are given
in the references [26,28].

2.5 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we defined [26,28] the C2-CSM, a restricted and more realistic class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete Fourier transform (DFT) in the
horizontal and vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.
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Let us discuss these restrictions. The restrictions on amplRes and phaseRes
imply that C2-CSM images are of the form f : [0, 1)×[0, 1)→{0,± 1

2 ,±1,± 3
2 , . . .}.

We have replaced the Fourier transform with the DFT [3], this essentially means
that freq is now solely dependent on spatialRes; hence freq is not an in-
teresting complexity measure for C2-CSMs and we do not analyse C2-CSMs in
terms of freq complexity [26,28]. Restricting the growth of space is not unique
to our model, such restrictions are to be found elsewhere [8,19,21].

In Section 2.1 we stated that the address encoding function E should be
Turing machine decidable, here we strengthen this condition. At first glance
sequential logspace computability may perhaps seem like a strong restriction,
but in fact it is quite weak. From an optical implementation point of view it
should be the case that E is not complicated, otherwise we cannot assume fast
addressing. Other (sequential/parallel) models usually have a very restricted ‘ad-
dressing function’: in most cases it is simply the identity function on N. Without
an explicit or implicit restriction on the computational complexity of E, find-
ing non-trivial upper bounds on the power of C2-CSMs is impossible as E could
encode an arbitrarily complex halting Turing machine. As a weaker restriction
we could give a specific E. However, this restricts the generality of the model
and prohibits the programmer from developing novel, reasonable, addressing
schemes.

2.6 C2-CSM and Parallel Complexity Theory

We have given lower bounds on the computational power of the C2-CSM by
showing that it is at least as powerful as models that verify the parallel com-
putation thesis [26,29]. This thesis [5,7] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [10,11,19,23] for details. Let S(n) be a space bound that is Ω(log n).
The languages accepted by nondeterministic Turing machines in S(n) space are
accepted by C2-CSMs computing in time O(S4(n)).

Theorem 1 ([26,29]). NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S4(n)))

For example polynomial time C2-CSMs accept the PSPACE languages. (Of
course any polynomial time C2-CSM algorithm that we could presently write
to solve PSPACE-complete or NP-complete problems would require exponen-
tial space.) Theorem 1 is established via C2-CSM simulation of vector ma-
chines [2,20,21]. In the simulation the space overhead is polynomial in vector
machine space. Using this fact we find that C2-CSMs that simultaneously use
polynomial space and polylogarithmic time accept the class NC.

Corollary 1 ([26,29]). NC ⊆ C2-CSM–SPACE,TIME(nO(1), logO(1) n)

We have also given the other of the two inclusions that are necessary in order to
verify the parallel computation thesis; C2-CSMs computing in time T (n) are no
more powerful than O(T 2(n)) space bounded deterministic Turing machines.
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Theorem 2 ([26,27]). C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

Via the proof of Theorem 2 we get another (stronger) result. C2-CSMs that simul-
taneously use polynomial space and polylogarithmic time accept at most NC.

Corollary 2 ([26,27]). C2-CSM-SPACE,TIME(nO(1), logO(1) n) ⊆ NC

The latter two inclusions are established via C2-CSM simulation by logspace uni-
form circuits of size and depth polynomial in space and time respectively. Thus
C2-CSMs that simultaneously use both polynomial space and polylogarithmic
time characterise NC.

It turns out that the C2-CSM simulation of sequential space can be made
more efficient. Theorem 3 in the next section improves the lower bound given
by Theorem 1.

3 Improved C2-CSM Lower Bound

In this section we improve the lower bound given by Theorem 1 by proving the
following result.

Theorem 3. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S2(n)))

Moreover the grid and dyRange complexities are both reduced from O(2S(n))
to O(1). However we see a trade-off here as the reduction in grid and dyRange
is swapped for an increase2 in spatialRes from O(2S(n)) to O(23S(n)S3). Thus
the space overhead in Theorem 3 has not decreased, nevertheless the trade-off is
interesting. Also the simulation is achieved3 with amplRes of 1 and phaseRes
of 1. In summary, we have tightened the relationship between the C2-CSM and
sequential space:

Corollary 3

NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n))2) ⊆ DSPACE(O(S(n))4)

We prove Theorem 3 by giving a C2-CSM that efficiently generates (Lemma 1)
and squares (Lemma 2) the transition matrix of a S(n)=Ω(log n) space bounded
Turing machine.

We assume that Turing machines have a single tape, use only binary tape
symbols {0, 1} and are nondeterministic. At each timesstep the tape head moves
either left (denoted L) or right (denoted R). The proofs below are sketched in
the sense that we refrain from giving explicit code.
2 On a technical note we are abusing notation here. C2-CSMs are defined to use

spatialRes O(2t) after t timesteps. To save the reader the burden of new notation
we overload the notation “C2-CSM” by using it to also describe machines that are
C2-CSMs except for the fact that they have a O(2O(1)t) upperbound on spatialRes.
Although we omit the details, we note that Theorem 2 and Corollary 2 still hold for
such (more general) definitions of C2-CSM.

3 This is in contrast to the proof of the previous lower bound proof [26,29] where
amplRes and phaseRes were both 2. Subtraction (via addition of negative numbers)
and devision by 2 (via multiplication by 1/2) are not needed in the present proof.



Optical Computing and Computational Complexity 35

3.1 Iteration

In order to bound iterative loops we use a ‘counter image’. In previous work
[26,29] we used an image with value/range of k (and thus of dyRange k) as a
counter for k iterations. At each iteration the counter image is decremented by 1
(by adding an image of value −1), and tested for equality with 0 (by addressing).

Here we are restricted to constant dyRange so a different approach is adopted.
Our counter image for value k is a unary stack image that represents 1k. A unary
stack image is just like the binary stack illustrated in Figure 2(e) except that the
represented word is a list of ones. To access the ith bit in a stack image we ‘pop’ the
stack i times. Popping involves spreading the stack over two horizontally adjacent
images, the leftmost image now contains the topmost stack element, the rightmost
image contains the remainder of the stack. Popping the stack in this way uses
grid O(1) and time O(k) to pop the entire stack. After each pop we test if the
popped element is 0 by addressing, this happens only on pop k+1. The unary stack
image representation requires spatialRes of O(2k), and amplRes, phaseRes
and dyRange of 1.

In the sequel we simply write S(n) as S. In the proof of Lemma 1 below all
loops run for S or logS iterations. Thus their counter images have spatialRes
of O(2S), which is no more than the spatialRes of other parts of the algorithm.
A similar argument holds for Lemma 2.

3.2 Generating the Transition Matrix

The configuration graph of a space bounded Turing machine M is a graph with
exactly one node for each configuration of M . There is a path from node i
to node j iff configuration ci leads to configuration cj in exactly one step via
some transition rule of M (formally we write ci �M cj). On input w, given the
pair of nodes corresponding to the (unique) initial and accepting configurations,
simulating the computation of M(w) is the same as asking if there is a path
from the initial node to the accepting node. We simulate M by computing the
reflexive transitive closure of the transition graph. To do this we represent the
graph by a binary matrix which we call the transition matrix of M . There is one
row (respectively column) for each node. Entry (i, j) is 1 iff there is a path from
node i to node j. The reflexive transitive closure is computed by squaring the
matrix a number of times that is logarithmic in the number of nodes. Motivations
and further details are to be found in van Emde Boas’ survey [23].

We begin by constructing the binary transition matrix.

Lemma 1. Let M be a Turing machine that accepts L ∈ {0, 1}∗ in space S = 2i

for some i ∈ N. Then there is a C2-CSM that generates the transition ma-
trix of M in time O(S), spatialRes O(22SS2), grid O(1), dyRange O(1),
amplRes 1 and phaseRes 1.

Proof (sketch). Let Q be the states of M and t = (qx, σ1, σ2, D, qy) be an ar-
bitrary transition rule of M , with initial state qx, next state qy, read symbol
σ1 ∈ {0, 1}, write symbol σ2 ∈ {0, 1}, and tape head move direction D ∈ {L,R}.
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Before generating the matrix we precompute some special images.
A Turing machine tape word is represented in a straightforward way as a

binary list image. We quickly generate all 2S possible words of length S in time
O(log S)2 and spatialRes O(2SS). The output, denoted TapesVertical, is a list-
matrix image with 2S rows and S columns, where each row represents a unique
tape word. To do this we use an algorithm that (recursively) generates the matrix
image TapesVerticals/2 of all words of length S/2. We let f = TapesVerticals/2
then the following is repeated logS times: place one copy of f immediately
above another, scale the two to one image, call the new image f . After this
repeated scaling f contains S copies of TapesVerticals/2. We place f immediately
to the right of TapesVerticals/2 and the two are scaled to a single image to give
TapesVertical.

We generate the image TapesHorizontal that represents each possible tape
word repeated S times. More precisely, TapesHorizontal is the list image repre-
sentation of the binary word

(0S)S(0S−11)S(0S−210)S(0S−211)S . . . (1S)S

TapesHorizontal is generated in time O(S) and spatialRes O(2SS2) from
TapesVertical by copying and shifting subimages, the details are omitted.

A tape head position k ∈ {1, . . . , S} is encoded as the list image representation
of the word 0k−110S−k. There are S such words and we generate these in time
O(log S) and spatialRes O(S2) by copying and scaling. The output P is a S×S
matrix image with ones on the diagonal (Pi,i = 1) and zeros elswhere. Each row
represents a unique tape head position. The image PositionsVertical consists of
2S vertically juxtaposed copies of P and is easily generated in time O(S).

We generate the image PositionsHorizontal that represents the list of all pos-
sible position words, repeated 2S times. More precisely, PositionsHorizontal is
the list image representation of the binary word

(
(10S−1)(010S−2)(0010S−3) . . . (0S−11)

)2S

PositionsHorizontal is generated in time O(S) and spatialRes O(2SS2) from
PositionsVertical by copying and shifting subimages, the details are omitted.

Finally we precompute the image PR which is identical to P except that the
represented tapes have their head positions moved one cell to the right (if the
head was on the rightmost tape cell then it is moved to the leftmost tape cell).

We are now ready to generate the transition matrix. The Turing machine has
at most 8|Q|2 transition rules. For simplicity we assume that all 8|Q|2 possible
transition rules are explicitly given. We begin by generating the transition matrix
for one of these transition rules t that changes the machine from state q� to
state qm as follows: t = (q�, 1, 1, R, qm). Thus we are generating a matrix image
that represents a binary matrix with entry (i, j) equal to 1 iff ci � cj via t.

First we generate a column image, denoted σ̄1, with entry i ∈ {1, . . . , 2SS}
equal to 1 iff the read symbol of ci is σ1 = 1. We use PositionsVertical as a mask
to isolate the read symbols from TapesVertical; that is we pointwise multiply
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PositionsVertical and TapesVertical in time O(1). The resulting matrix is called
MaskedReadSymbols. We vertically split MaskedReadSymbols into a left image
and a right image, pointwise add the two, and repeat; after logS iterations the
output is the column image σ̄1.

Secondly we generate a row image, denoted σ̄2, where entry j ∈ {1, . . . , 2SS}
is 1 iff the write symbol of cj is σ2 = 1. We use PositionsHorizontal as a mask to
isolate the write symbols from TapesHorizontal; that is we pointwise multiply
PositionsHorizontal and TapesHorizontal in time O(1). The resulting matrix
is called MaskedWriteSymbols. We ‘shuffle’ this row of 2S lists to a column
of 2S lists, that is we repeat the following S times: vertically split into a left
image and a right image, place the left image above the right and scale to one
image. Then we vertically split the result (in half) into a left image and a right
image, pointwise add the two, and repeat for a total of logS iterations. We then
‘unshuffle’ this column to a row in time O(S) to get σ̄2.

Thirdly we generate a 2SS×2SS binary matrix image called positions, where
entry (i, j) is 1 iff the tape head position on configuration ci, after a move to
the right (recall D = R), is equal to the tape head position of configuration cj .
To do this we generate P ′

R which is a S × S2 matrix image with S copies of PR

side by side. We then pointwise multiply P ′
R by the row image that represents

(10S−1)(010S−2)(0010S−3) . . . (0S−11)

The result of this multiplication is a S × S2 matrix image. Then (using the
technique of shuffling and adding mentioned above) this S × S2 matrix image
is ‘shuffled’ logS times, vertically split and added logS times, and ‘unshuffled’
logS times. The resulting S × S matrix image is replicated 22S times to create
a ‘square’ 2SS × 2SS matrix image denoted positions.

We pointwise multiply σ̄1, σ̄2 and positions in time O(1), and threshold be-
tween 0 and 1, to get a 2SS×2SS binary matrix image. Entry (i, j) of this matrix
image is 1 iff ci yields cj in one step under the read symbol 1, write symbol 1
and tape head direction R.

This above procedure is repeated 8 times with different values for the triple
(σ1, σ2, D) where σ1, σ2 ∈ {0, 1} and D ∈ {L,R}. The resulting 8 matrix images
are pointwise added in time O(1) to give a matrix image denoted B. Entry (i, j)
inB is 1 iff ci yields cj in one step under any (σ1, σ2, D). We then create a |Q|×|Q|
matrix image where entry (i, j) is 1 iff state qi yields qj via some transition rule
(this can be computed sequentially in a straightforward way in time O(|Q|2), or
in parallel time O(log |Q|) using techniques similar to those above). We multiply
this by a 2SS|Q| × 2SS|Q| matrix image that consists of |Q|2 copies of B. The
result is the binary matrix image that represents the transition matrix of M . �


3.3 Squaring the Transition Matrix

Lemma 2. Let n be a power of 2 and let A by a n × n binary matrix. The
matrix A2 is computed by a C2-CSM, using the matrix image representation, in
time O(log n), spatialRes O(n3), grid O(1), dyRange O(1), amplRes 1
and phaseRes 1.
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Proof (sketch). In this proof the matrix, and its matrix image representation are
both denoted A. We being with some precomputation, then one parallel point-
wise multiplication step followed by logn additions completes the algorithm.

We generate the matrix image A1 that consists of n vertically juxtaposed
copies of A. This is computed by placing one copy of A above the other, scaling
to one image, and repeating to give a total of logn iterations. The image A1 is
constructed in time O(log n), grid O(1) and spatialRes O(n3).

Next we transpose A to the column image A2. The first n elements of A2 are
row 1 of A, the second n elements of A2 are row 2 of A, etc. This is computed
in time O(log n), grid O(1) and spatialRes O(n2) as follows.

Let A′ = A and i = 2n. We horizontally split A′ into a left image A′
L and

a right image A′
R. Then A′

L is pointwise multiplied (or masked) by the column
image that represents (10)i, in time O(1). Similarly A′

R is pointwise multiplied
(or masked) by the column image that represents (01)i. The masked images are
added. The resulting image has half the number of columns as A′ and double the
number of rows, and for example: row 1 consists of the first half of the elements
of row 1 of A′ and row 2 consists of the latter half of the elements of row 1 of A′.
We call the result A′ and we double the value of i. We repeat the process to give
a total of logn iterations. After these iterations the resulting column image is
denoted A2.

We pointwise multiply A1 and A2 to give A3 in time O(1), grid O(1) and
spatialRes O(n3).

To facilitate a straightforward addition we first transpose A3 in the following
way: A3 is vertically split into a bottom and a top image, the top image is
placed to the left of the bottom and the two are scaled to a single image, this
splitting and scaling is repeated to give a total of logn iterations and we call the
result A4. Then to perform the addition, we vertically split A4 into a bottom
and a top image. The top image is pointwise added to the bottom image and the
result is thresholded between 0 and 1. This splitting, adding and thresholding is
repeated a total of logn iterations to create A5. We ‘reverse’ the transposition
that created A4: image A5 is horizontally split into a left and a right image, the
left image is placed above the right and the two are scaled to a single image,
this splitting and scaling is repeated a total of logn iterations to give A2. �


3.4 Proof of Main Result

At this point we have all the main ingredients for the proof of Theorem 3 which
goes as follows. Using Lemma 1 we generate the 2SS|Q| × 2SS|Q| binary transi-
tion matrix within the stated resource bounds. We put ones on the diagonal of
this matrix by pointwise adding it to the 2SS|Q| × 2SS|Q| identity matrix and
thresholding the result between 0 and 1, all in constant time (however generating
the identity matrix takes time O(S)). In time O(S2) we compute the reflexive
and transitive closure of this matrix by squaring it O(S) times via Lemma 2. In
terms of M ’s input length n, the overall time is O(S2(n)) and both spatialRes
and space are O(23S(n)S3(n)).
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acousto-optic connectionist processor. Optical Engineering, 38(7):1170–1177, July
1999.

16. T. J. Naughton. Continuous-space model of computation is Turing universal. In
S. Bains and L. J. Irakliotis, editors, Critical Technologies for the Future of Com-
puting, Proceedings of SPIE vol. 4109, pages 121–128, San Diego, California, Aug.
2000.

17. T. J. Naughton. A model of computation for Fourier optical processors. In R. A.
Lessard and T. Galstian, editors, Optics in Computing 2000, Proc. SPIE vol. 4089,
pages 24–34, Quebec, Canada, June 2000.



40 D. Woods

18. T. J. Naughton and D. Woods. On the computational power of a continuous-space
optical model of computation. In M. Margenstern and Y. Rogozhin, editors, Ma-
chines, Computations and Universality: Third International Conference (MCU’01),
volume 2055 of LNCS, pages 288–299, Chişinău, Moldova, May 2001. Springer.
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If a Tree Casts a Shadow Is It Telling the Time?
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Abstract. Physical processes are computations only when we use them
to externalize thought. Computation is the performance of one or more
fixed processes within a contingent environment. We reformulate the
Church-Turing thesis so that it applies to programs rather than to com-
putability. When suitably formulated agent-based computing in an open,
multi-scalar environment represents the current consensus view of how
we interact with the world. But we don’t know how to formulate multi-
scalar environments.

1 Introduction

In the preface to the first edition of the International Journal of Unconventional
Computation, the editorial board [1] welcomed papers in “information process-
ing based on physics, chemistry and biology.” But the Board left undefined what
it means to say (a) that a physical, chemical, or biological system is doing “in-
formation processing” or (b) that information processing is “based on physics,
chemistry, or biology.” In this paper we explore these issues by focusing on these
questions.

– What is computation?
– How can computation be distinguished from other natural processes?
– What is the relationship between ideas and computations?
– What is the relationship between a computational process and the environ-

ment within which it occurs?

Our conclusions will be that physical processes are considered computation
when we treat them as externalized thought and that computation itself in-
volves the playing out of fixed processes against a contingent environment. We
re-interpret the Church-Turing Thesis: programs represent how we understand
rigorous thought to be expressed. We then agree with Wegner [2] that the agent-
based model of computation is the right way to think about interaction with an
environment. But we claim that we are not yet in a position to specify environ-
ments that are multi-scalar.

1.1 Is Google Reading My Email?

That’s the first question in the Google Gmail help center [3]. This question
arises because Gmail places ads next to email messages, and the selection of ads
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is based on the contents of the messages. Google’s answer to this question has
varied over time. On March 13, 2006, the posted answer was as follows.

Google computers scan the text of Gmail messages in order to filter
spam and detect viruses, just as all major webmail services do. Google
also uses this scanning technology to deliver targeted text ads and other
related information. The process is completely automated and involves
no humans. [Emphasis added.]

In other words, Google’s computers are reading your email-but no human
beings are. That most people find this reassuring illustrates the intuition that
it’s what goes on in the mind of a human being that matters to us.

One might object that if a computer is reading one’s email (and storing its con-
tents in a database), a person might read it later. That’s quite true, and the fact
that only Google computers (and not Google employees) are reading one’s email
when selecting ads does not guarantee one’s privacy. But if no person ever reads
one’s email, then most people will not feel that their privacy has been violated.

After all, all email is read by a number of computers as it passes from sender
to receiver. No one has ever worried about that. The moment of violation occurs
when some living human being becomes consciously aware of one’s personal
information.

But, one might argue, the kind of reading that occurs when a computer trans-
mits a message along a communication channel is qualitatively different from the
kind of reading that occurs when a Google computer determines which ads to
place next to a message. The former kind of reading treats messages as character
strings. No meaning is extracted. The kind or reading that Google computers do
extracts (or attempts to extract) meaning so that related ads can be displayed.

This raises the question of what we understand by the term meaning. That’s
clearly a larger topic than we can settle here, but our short answer is that our
intuitive sense of meaning has something to do with an idea or thought forming
in a mind.1 At this stage in the development of technology, most people don’t
believe it makes sense to say that an idea has formed in the mind of a computer-
or even to say that a computer has a mind at all. We may speak informally and
say something like “the computer is doing this because it thinks that.” But when
we say these sorts of things, we are deliberately speaking metaphorically. Until
we start to think of computers as having minds that have subjective experi-
ence, minds in which ideas can form-then most people will feel comfortable with
Google’s reply that its computers, but no human beings, are reading one’s email.

1.2 To Come

Section 2 continues the discussion of thoughts and introduces the notion of
thought tools, for which it provides a brief history. Section 3 considers how
computation might be defined. Section 4 discusses the agent-based computing
1 This clearly is different from the formal semantics sense in which meaning refers to

a mapping from an expression to a model.
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paradigm as more than just an approach to programming and modeling but as
common to many of the ways we think about both thinking and our interaction
with nature.

2 Thinking and Thought Tools

If a tree grows in a forest, but no one counts its rings is it counting years? Is it
performing an unconventional computation? If a tree grows in a forest but no
one knows it’s there, is it instantiating the idea of a tree? These questions have
the same sort of answers as does Bishop Berkeley’s famous question: if a tree
falls in a forest with no one around to hear it, does it make a sound?

Berkeley’s question is not as difficult as it seems. Our answer, which is differ-
ent from Berkeley’s,2 is that one must distinguish between physical events and
subjective experience. If a tree falls in a forest, it generates (what we call) sound
waves whether someone is there to hear them or not. But if no one is there to
hear the sound, if no being has a subjective experience of the sound, then no
sound will be heard.

The same holds for ideas. Like the subjective experience of a sound, the idea
of a tree exists only as a subjective experience. If no one has that subjective
experience, then a tree without anyone knowing about it will not be instantiating
the idea of a tree.

Even if one grants that the idea of a tree is exactly the right way to describe
that particular aspect of nature, that idea exists only as an idea, and it exists
only in the mind of someone who is thinking it. Ideas exist only within the realm
of mental events, i.e., as subjective experience. In saying this we are taking an
explicitly anti-Platonist stance: there is no realm outside the mind in which ideas
exist on their own.3

This is not intended as mystical or profound-just a statement of a brute fact:
an idea is something that occurs only in someone’s mind. The ideas in this
paper exist only in the mind of the author and the minds of the readers as the
author and readers are thinking them. These ideas don’t exist on the paper or
on the computer screens on which these words appear. They don’t exist in the
computer memory in which these words are stored. Just as the moment at which
an invasion of privacy occurs is when some being-with-a-mind learns something
personal about us, an idea exists only when someone is thinking it.4 We go to
such lengths to make this point because our position is that computations, like

2 Berkeley’s answer is that it makes a sound because God, who is always everywhere,
hears it.

3 We are not taking a stand on nominalism vs. realism. Although we believe that our
(human) ideas about how nature should be described are not arbitrary and that
entities other than the elementary particles exist (see Abbott [4]), that is not at
issue here.

4 This position requires some care in formulation. If an idea exists only when someone
is thinking it, what does it mean to say that two people have or had “the same”
idea? We believe that these issues can be worked out.
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ideas, are also mental events, but mental events that we have externalized in a
way that allow us to use physical processes to perform them.

When a tree grows rings, it just grows rings. But when we use that tree-ring
growth as a way to count years, i.e., to help us work with ideas such as the
idea of a year, then we can say that the tree has performed a computation-an
unconventional one.

When a computer runs is it computing? Our answer is the same. A computer
is computing only when it is understood to be performing some externalized
mental activity. Otherwise, it’s just an arena within which electrons are moving
about.

2.1 A Brief History of the Internalization and Then the
Externalization of Thought

One may trace one thread through the history of thought as the internalization
and then the externalization of thought. Initially we looked outward for answers
to questions about how to make sense of the world. Not knowing what else to do,
we looked to sources of what we hoped were authority: priests, oracles, prophets,
sacred writings, divinities, etc., to tell us what thoughts to install in our minds.5

We often fought with each other about whose sources of knowledge were right.
In a recent op-ed piece [5] Lorenzo Albacete, a Roman Catholic priest, articulated
the position of those who fear the use of religion as a source of knowledge.

For [nonbelievers], what makes Christianity potentially dangerous [is not
its other-worldliness but] its insistence that faith is the source of knowl-
edge about this world.

As Albacete later notes, by the time of the Roman Empire, the use of religion
as a source of ideas about how nature works had been discarded by enlightened
thinkers. Greek and Roman philosophers believed that they themselves could
be a source of knowledge about the world. The step from looking for external
sources of knowledge to supposing that perhaps we can figure it out for ourselves
is what we are referring to as the internalization of thought-attributing to oneself
the power to produce thoughts of value and rejecting the notion that thoughts
must originate externally to be valid.

2.2 Externalizing Thought and Tools to Work with It

The history of early computing may be traced along three paths. Each path
traces devices that help us think about a particular (and fundamental) subject
area: time, counting (arithmetic), and space (geometry).
5 One wonders what priests, oracles, prophets, and other human authorities believed

about how the ideas they transmitted arrived in their own minds. Perhaps they
believed that the ideas had been implanted in their minds as a result of their special
status or as a result of some special words or rituals that they performed. Perhaps
they were just transmitting ideas that had been transmitted to them. Presumably
they didn’t believe that they themselves made up these ideas. Most likely they didn’t
ask themselves this question.
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2.3 Time Computers

We used natural processes to help us express our ideas about time-the daily,
monthly, and yearly cycles of the earth, moon, and sun. Not to beat this point
into the ground, day, month, and year are ideas. As ideas, they exist only in the
mind-no matter how accurate or true they are as descriptions of nature.

The first (analog6) time computers were the actual processes that corre-
sponded to our thoughts. The rising and setting of the sun were the physical
events that we used to keep track of the mental events: the start and end of a
day. Similarly for the moon. Yearly events such as river floodings and the com-
ings and goings of the seasons helped us keep track of the mental event: the
yearly cycle.

It didn’t take us long to invent more sophisticated analog computers. The
sundial, for example, is an analog computing device. The position of the sun’s
shadow is an analog for the mental event time-of-day which corresponds to the
physical relationships between the relative positions of the sun and the earth.

It is worth noting that with the sundial we started to arrange physical materi-
als to help us track our thoughts. In building sundials we set up shadow casters,
which in conjunction with the sun and markings on the surface on which the
shadow is cast, helped us track (our ideas about) the passing of the day. Pre-
sumably this was not a very significant step from using existing shadow-casting
objects, e.g., trees, for the same purpose. Hence our title: if a tree casts a shadow,
is it telling the time?

2.4 Using Epiphenomenal Shadows to Tell the Time

The use of shadows as thought tools deserves special attention. In [4] we discuss
naturally occurring entities that persist independently of human observation.
These include atoms, molecules, animals, organizations, hurricanes, galaxies, and
most of the things we intuitively think of as entities. Shadows are not in this
category.

A shadow, after all, is that portion of a background that is not illuminated
by a light source because an object is blocking the light. The shadow itself
is not an entity. At best a shadow-and more importantly, the leading edge of a
moving shadow-is an epiphenomena of the changing relationships among the light
source, the background, and the object. Although the mechanisms are completely
different, a (moving) shadow is very much like a (moving) pattern (such as a
glider pattern) in the Game of Life. In both cases, the apparent object (the
shadow or the Game of Life pattern) consists of illuminated/not illuminated or
on/off elements on a surface. Over time, the on/off elements may appear to move
across the surface. In fact, the on/off elements don’t move; it is only the patterns
of on/off elements that appear to move.

But patterns don’t move either. With both Game of Life patterns and shad-
ows, portions of the surface are on and portions of the surface are off at any
6 An analog computer is so called because can be understood as analogous to some-

thing else.
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given time. That the same or similar on/off configurations appear first at one
location and then at another is a consequence of the mechanisms that generate
those shadows and patterns. Patterns and shadows themselves are not capable
of moving either under their own power or as a result of some force being applied
to them. Neither shadows nor patterns can propel themselves. Nor can one push
or pull them.

The mechanisms that produce both shadows and Game of Life patterns are
fixed-and thoughtless. The Game of Life rules are simply rules for how and when
cells turn on and off. The relative motion of the sun, a tree (or other shadow
casting object), and a background surface is equally fixed and thoughtless. Yet
in both cases, we can use the generated patterns to represent our thoughts.

Using Game of Life patterns we can generate very complex idea. Similarly, we
can interpret sun/object/ground shadow patterns to help us think about ideas
such as the time of day or day of the year. We had the idea of a day and a
year, and we used shadows to help us think about them before we knew what
produced them. In both cases, we used patterns generated by fixed rules to help
us think.

2.5 Number Computers

Apparently we started to count quite early. Bones with notches carved into them
appeared in western Europe 20,000 to 30,000 years ago. There is evidence of the
use of a tally system-groups of five notches separated from each other. With
tally systems not only did we mark physical materials to help us keep track of
numbers (which are also mental events), we also invented ways to make counting
easier by the way in which we arranged these markers, i.e., in groups. Soon we
invented the abacus.

With these primitive computers we separated the computational process from
its dependency on natural processes. Sundials and astronomical masonry de-
pend on the sun and the stars. Counting depends on nothing other than human
activity. Once we invented computational devices that were independent of
non-human physical processes it was a short step to written notation. By ap-
proximately 3,000 BC cuneiform writing on clay tablets using positional notation
was known in Babylonia.

2.6 Space Computers

Besides time and numbers, the Pythagoreans in Greece and Euclid in Egypt
developed ways to think about space. We know that early geometers thought
about construction issues. The straight edge and compass were their (human-
powered) thought tools. They used them to externalize, to create representations
of, and to manipulate the ideas of straight lines and circles.

2.7 Is It Reasonable to Call Abaci and Geometers’ Tools
Computers?

Even though abaci and geometers’ tools are completely independent of non-
human physical processes, i.e., they are entirely dependent on human activity
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to make them “run,” we feel justified in calling them computers because they
are used according to mechanical rules. Even though the source of energy for
an abacus is the user, the abacus user follows strict rules-rules which could be
automated.

2.8 Thought Tools for Symbol Manipulation

Beyond time, numbers, and space, we have also built thought tools to represent
symbolic thoughts and relationships. Sowa [6] describes the Tree of Porphyry.

The oldest known semantic network was drawn in the 3rd century AD
by the Greek philosopher Porphyry in his commentary on Aristotle’s
categories. Porphyry used it to illustrate Aristotle’s method of defining
categories by specifying the genus or general type and the differentiae
that distinguish different subtypes of the same supertype.

Another attempt to externalize symbolic thought has been credited to Ramon
Lull in the late 13th century. Smart [7] describes it as follows.

Ramon Lull’s logic machine consisted of a stack of concentric disks
mounted on an axis where they could rotate independently. The disks,
made of card stock, wood, or metal, were progressively larger from top
to bottom. As many as 16 words or symbols were visible on each disk.
By rotating the disks, random statements were generated from the align-
ment of words. Lull’s most ambitious device held 14 disks.
The idea for the machine came to Lull in a mystical vision that appeared
to him after a period of fasting and contemplation. It was not unusual in
that day... scientific advances to be attributed to divine inspiration. He
thought of his wheels as divine, and his goal was to use them to prove
the truth of the Bible...
In “Gulliver’s Travels,” Swift satirizes the machine without naming Lull.
In the story, a professor shows Gulliver a huge contraption that generates
random sequences of words. Whenever any three or four adjacent words
made sense to-gether, they were written down. The professor told Gul-
liver the machine would let the most ignorant person effortlessly write
books in philosophy, poetry, law, mathematics, and theology.

This may be the first use of non-determinism in computing.
Soon thereafter William of Ockham discovered the foundations of what were

to become De Morgan’s laws of logic. More specifically, from Sowa [8]:

(Ockham, 1323) showed how to determine the truth value of compound
propositions in terms of the truth or falsity of their components and to
determine the validity of rules of inference... in terms of the truth of their
antecedents and consequents.
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2.9 Thought Tools and the Scientific Process

Clocks, abaci, straight-edges, hierarchies, non-determinism, laws of logic, and
other thought tools differ in kind from microscopes, telescopes, and other scien-
tific instruments of observation. The former are intended to allow us to external-
ize and manipulate our thoughts. The latter allow us to investigate nature-to see
what’s out there and perhaps to see things that will require new ideas to under-
stand them. Thought tools are constructive; instruments of scientific observation
are reductive.

Thus after having convinced ourselves that we are capable of generating our
own ideas, an important next step was to realize the necessity of testing our ideas
against nature. Simply coming up with an idea is not enough. It’s important both
to externalize it as a way to work with it and to test it by looking at nature
though it. Thus science consists fundamentally of three kinds of activity.

1. Uncovering new facts (observations) about nature.
2. Reverse engineering nature to figure out how nature may have harnessed

understood principles to produce the observed facts.7 Although reverse en-
gineering sounds unglamorous, it is a fundamental activity. Determining that
our genome is encoded as a double helix was reverse engineering.

3. Establishing new fundamental principles and then using them as the basis
of the reverse engineering process. This occurs only in fundamental physics.

Scientific instruments help us with (1). Thought tools help with (2) and (3).

2.10 The State of the Art of Thought Externalization

Every computer application is a thought tool. The thoughts that are being ma-
nipulated are the thoughts that are represented by the conceptual model im-
plemented by the application. More importantly every programming language
is a thought tool. Programming languages allows us to externalize in the form
of computer programs our thoughts about symbolic behaviors. Since one writes
computer applications in programming languages, a programming language is
a thought tool for building thought tools, i.e., a thought tool for externalizing
thought.

It is important to realize that a programming language is itself a computer
application. As a computer application, it implements a conceptual model; it
allows its users to express their thoughts in certain limited ways, namely in
terms of the constructs defined by the programming language. But all modern
programming languages are also conceptually extensible. Using a programming
language one can define a collection of concepts and then use those concepts to
build other concepts.

We are still learning to use the power of computers to externalize thought. In
one way or another, much of software-related research is about developing more

7 Reductionism has recently received a lot of bad press. As explicated here, the reduc-
tionist impulse often leads to the development of important new ideas.
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powerful, more specialized, faster, easier to use, or more abstract thought tools.
We also develop increasingly powerful languages in which to externalize and
work with our thoughts. The more we learn about externalizing our thoughts the
higher we ascend the mountain of abstraction and the broader the vistas we see.

Work in externalizing thought includes declarative programming (e.g., logic
programming, functional programming, constraint-based programming, rules-
based systems such as expert systems, etc.), meta and markup languages such
as XML and its extensions and derivatives, the Unified (and Systems) Model-
ing Language (UML and SysML), and the Semantic Web and the OWL Web
Ontology Language for externalizing how we look at the world. With OWL we
are working in a tradition that dates back to Porphyry-and before. Domain-
specific applications also represent externalization of how we think about those
domains. Thought tools for the manipulation of images, sounds, videos, etc. have
externalized ways of thinking about those domains.

3 Defining Computation

In this section we turn to the question of how to define computation. It is surpris-
ingly difficult to find a well considered definition. The one offered by Eliasmith
[9] appears to be the most carefully thought out. Here is his definition and his
commentary.

Computation. A series of rule governed state transitions whose rules can
be altered. There are numerous competing definitions of computation.
Along with the initial definition provided here, the following three defi-
nitions are often encountered:

1. Rule governed state transitions.
2. Discrete rule governed state transitions.
3. Rule governed state transitions between interpretable states.

The difficulties with these definitions can be summarized as follows:
a) The first admits all physical systems into the class of computational

systems, making the definition somewhat vacuous.
b) The second excludes all forms of analog computation, perhaps in-

cluding the sorts of processing taking place in the brain.
c) The third necessitates accepting all computational systems as repre-

sentational systems. In other words, there is no computation without
representation on this definition.

Contrary to Eliasmith we suggest the following.

a) The notion of alterable rules is not well defined, and hence all physical sys-
tems are potentially computational systems.

b) But, it is exactly the fact of interpretability that makes a physical process
into a computation. (Eliasmith doesn’t explain why he rejects the notion
that computation requires interpretation.)
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Eliasmith requires that the rules governing some identified state transitions
must be alterable in order to distinguish a computation from a naturally oc-
curring process-which presumably follows rules that can’t be altered. But all
computing that takes place in the physical world is based on physical processes.
If we set aside the probabilistic nature of quantum physics, and if we suppose
that physical processes operate according to unalterable rules, it’s not clear what
it means to say that it must be possible to alter a set of rules.

This is not just being difficult. Certainly we all know what it means to say
that one program is different from another-that “the rules” which govern a com-
putation, may be altered. But the question we wish to raise is how can one
distinguish the altering of a program from the altering of any other contingent
element in an environment?8

It is the particular program that is loaded into a computer’s memory that
distinguishes the situation in which one program is being executed from that
in which some other program is executing. But a computer’s memory is the
environment within which the computer’s cpu (or some virtual machine) finds
itself, and a loaded program defines the state of that environment. The cpu (or
the virtual machine) is (let’s presume) fixed in the same way that the laws of
nature are fixed. But depending on the environment within which it finds itself–
i.e., the program it finds in its environment–the cpu operates differently, i.e., it
performs a different computation.

This same sort of analysis may be applied to virtually any natural process.
When we put objects on a balance scale, the scale’s behavior will depend on
the objects loaded, i.e., on the environmental contingencies.9 In both the case of
programs loaded into a computer and objects put in the pans of a balance scale,
we (the user) determine the environment within which some fixed process (i.e.,
the rules) proceeds.

This brings us back to our original perspective. A process in nature may be
considered a computation only when we use it as a way to work with exter-
nalized thought. A physical or otherwise established process-be it the operation
of a balance scale, a cpu, the Game of Life, or the sun in motion with respect
to trees and the ground-is just what it is, a fixed process.10 But for almost all
processes,11 whether we create them or they arise naturally, how the process

8 We don’t address the issue of “hard-wired” computations. How fixed must state
transitions be before one is no longer willing to say they aren’t alterable-and hence
not a computation?

9 When a balance scale compares two objects and returns an “output” (selected from
left-is-heavier, equal-weights, and right-is-heavier), is it performing a computation?
It is if we are using it for this purpose. It isn’t if we are using it as a designer setting
for flower pots.

10 Of course many processes-such as the operation of a cpu and the operation of a balance
scale-are what they are because we built them to be that way-because we anticipated
using contingencies that we could control in their environment to help us think.

11 Some quantum processes may occur on their own without regard to their
environment-although even they are environmentally constrained by the Pauli ex-
clusion principle.
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proceeds depends on environmental contingencies. When we control (or inter-
pret) the contingencies so that we can use the resulting process to work with our
own thoughts, then the process may be considered a computation. This is the
case whether we control the contingencies by loading a program into a computer,
by placing objects on a balance scale, by establishing initial conditions for the
Game of Life, or by giving meaning to shadows cast by trees.

Consequently we agree with Eliasmith that it must be possible to alter a
process for it to be considered a computation, but we would express that con-
dition in other words. For a process to be considered a computation there must
be something contingent about the environment within which it operates which
both determines how it proceeds and determines how we interpret the result.

In other words, we can always separate a computational process into its fixed
part and its contingent or alterable part. The fixed part may be some concrete
instances of the playing out of the laws of nature – in which case the contingent
environment is the context within which that playing out occurs. Or it may be
the operation of a cpu-in which case the contingent environment is the memory
which contains the program that is being executed. Or it may be the operation of
a program that a cpu is executing – in which case the contingent environment is
the input to that program. A computation occurs when we alter the contingencies
in the environment of an fixed process as a way to work with our thoughts.

This perspective contrasts traditional (theoretical) computation with real-
world computation. Normally, one thinks of a (theoretical) computation as a
contingent process-one which is defined in a programming language. Like a Tur-
ing Machine it runs for free. We contrast this with real-world computations,
which result from non-contingent processes which have built-in energy sources
and that operate in contingent environments.

3.1 Non-algorithmic Computing

A corollary of the preceding is that all computation performed by real-world
processes are environmentally driven. Computing involves configuring environ-
mental contingencies, i.e., setting up an environment within which a process (or
multiple processes) will play themselves out. We refer to this as non-algorithmic
computing because one’s focus is on how an environment will shape a process
rather than on a specific sequence of steps that the shaped process will take. No
explicit algorithm is involved. Most of what we call unconventional computation
is non-algorithmic.

It may seem ironic that what we think of as conventional computation is a
constrained form of unconventional computation. We are attracted to it because
its single threaded linearity makes it easy to manage. But nature is not linear.
Any computer engineer will confirm how much work it takes to shape what really
goes on in nature into a von Neumann computer. Even more ironically, we then
turn around and use conventional single-threaded computers to simulate nonlin-
ear unconventional computation. One might say that a goal of this conference
is to eliminate the von Neumann middle man – to find ways to compute, i.e.,
to externalize our thoughts, by mapping them more directly onto the forces of
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nature operating in constrained environments. The operations performed by the
forces are nature are real–world individual Turing Machines. A general purpose
computer is a real-world Universal Turing Machine.

3.2 Turing Machines vs. Turing Computability

Why can’t we look to Turing Machines (and their equivalents) for a definition of
computation which is defined independently of thought? Turing Machines, recur-
sive functions, and formally equivalent models rely on the notions of symbols and
symbol manipulation, which are fundamentally mental constructs. Eliasmith’s
definition doesn’t – although his definition does depend on the notion of rule-
governed state transitions, which appears difficult to define non-symbolically.
The saving grace of states and state transitions is that they are intentional; they
are our way of thinking about what happens in nature. Symbol manipulation is
a purely mental activity.

But Turing Machines – and their Church-Turing Thesis equivalents – offer an
important insight. They identify symbol manipulation to be what we intuitively
think of as computational activity. The Turing Machine model is our way of
externalizing an entire class of mental activities, the class that we intuitively
identify as computational.

In saying this we are separating (a) the sorts of computational activities char-
acterized by Turing Machines, i.e., the Turing Machines themselves, from (b)
the class of functions that these models compute, i.e., Turing computability. The
various models of computational activities are all defined constructively, i.e., in
terms of the operations one may perform when constructing a computational
procedure. Furthermore, the equivalence proofs among the standard models are
also constructive. We can constructively transform any Turing Machine into a
recursive function and vice versa. Turing Machines, recursive functions, etc. are
equivalent as programming languages.

Computability theory then takes the generic class of software defined in this
way and applies it to the task of computing functions. But this second step isn’t
necessary. What’s important about the Church-Turing Thesis is not the class of
functions that can be computed but the possible programs one may write, i.e.,
that Turing Machines, recursive functions, etc. are our way of externalizing a
fundamental mode of thought. Our revised version of the Church-Turing Thesis
is that to be considered rigorous a thought process must, at least in principle,
be expressible as a software.

4 Agent-Based Computing

The Turing Machine model is single threaded-as are the single processor von Neu-
mann computers that we built based on it. But many of our computer science (and
other) thought models are either parallel, asynchronous, or non-deterministic. Not
all rigorously defined models are linear and single threaded. Yet we have been un-
able to build thought tools to help us externalize these kinds of non-deterministic



If a Tree Casts a Shadow Is It Telling the Time? 53

computational ideas. Attempts to perform non-deterministic computations on a
single-threaded computer result in unrealizable demands for resources.12

Four decades ago agent-based computing, an intermediate form of compu-
tational framework, began to emerge Dahl [10]. Agent-based computing is an
attractive form of asynchronicity because it relies on manageable parallelism-
asynchronous computing threads that don’t result in an unrealizable demand
for computing re-sources. Its price is chaotic asynchronicity: minimally different
event orderings may yield different results.

4.1 Open and Far-from-Equilibrium Computing

Goldin and Wegner [11] have defined what they called persistent Turing Ma-
chines (and elsewhere interaction machines). These are Turing Machines that
perform their computations over an indefinite period-continually accepting in-
put and producing output without ever completing what might be understood
as a traditional computation. Results of computations performed after accepting
one input may be retained (on the machine’s ”working tape”) and are available
when processing future inputs. Although Wegner’s focus is not on agent-based
computing, his model is essentially that: agents which interact with their envi-
ronments and maintain information between interactions. From here on we use
agent to refer to an object that embodies a program.

Goldin and Wegner claim that their “interactive finite computing agents are
more expressive than Turing machines.” There has been much debate about this
claim. We believe that to ask about the level of computability of agents is to ask
the wrong question. We believe that what Wegner and Goldin have done is to
have taken implicitly the same stance that we took explicitly above, i.e., to dis-
tinguish between the programs one can write and the functions those programs
can compute. In making this implicit distinction Wegner and Goldin point out
that one need not think of the program that a Turing Machine embodies in func-
tional terms, i.e., as closed with respect to information flow. One can also think
of a Turing Machine as open with respect to information flow. This parallels the
distinction in physics between systems that are closed and open with respect
to energy flows. Wegner has outlined this position most recently in [12]. Com-
plex systems are famously far from equilibrium with respect to environmental
energy flows. Wegner and Goldin’s interaction machines (and agents in general)
are similarly far from equilibrium with respect to information flows.

What might one gain from being open to information flows? An illustrative
example is Prisoner’s Dilemma (PD). If one were to develop an optimized PD
player for a one-shot PD exchange-since it’s one shot, the system is closed-it will
Defect. Playing against itself, it will gain 1 point on each side-using the usual
scoring rules. If one were to develop an optimized PD player to engage in an iter-
ative PD sequence-the system is open-it will Cooperate indefinitely (presumably
by playing a variant of Tit-for-Tat), gaining 3 points on each side at each time.

12 If we get it to work on a useful scale quantum computing may be the first such thought
tool.
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Thus the same problem (PD) yields a different solution depending on whether
one’s system is presumed to be open or closed with respect to information flows.

4.2 Agents and Their Environments

Computation involves the interaction of a process with its environment. In all
cases with which we are familiar, the environment is modeled as a simply struc-
tured collection of symbols, e.g., a tape, a grid, etc. None of these models are
adequate when compared to the real-world environment within which we actu-
ally find ourselves. We do not know how to model the multi-scalar face that
nature presents to us – but almost certainly it won’t be as a tape or a grid.

– In our actual environment new entities and new kinds of entities may come
into existence. We are able to perceive and interact with them. We are aware
of no formal environmental framework capable of representing such phenom-
ena.

– We do not understand the ultimate set of primitives – if indeed there are
any – upon which everything is built.

We have referred [4] to these problems as the difficulty of looking upwards
and the difficulty of looking downwards respectively.

We are just beginning [4] to understand the nature of entities and of the multi-
scalar environment within which they exist. That environment involves entities
on multiple levels, but it also involves forces at only the most primitive level.
All other interactions are epiphenomenal. This is not simply a layered hierarchy,
although it has some layered hierarchy properties.

Given our lack of understanding about these issues it is not surprising that
we have not been able to develop a formal model of such an environment. Thus
a fundamental open problem in computing is to develop a formal model of an
environment that has the same sorts of multi-scalar properties as our real-life
environment.

Our revised version of the Church-Turing Thesis gives us confidence that our
current understanding of agents as entities that embody programs is reasonably
close to how we think about thinking. We are still quite far from the goal of for-
malizing appropriate environments within which such agents should be situated.

4.3 The Inevitable Evolution and Acceleration of Intelligence

As we saw in the PD example, thinking in terms of open computation model
leads to different results from thinking in terms of closed models. Yet both use
the same class of possible programs-whatever is programmable in a general pur-
pose programming language. Since open computation models include the class
of Oracle machines, computability doesn’t seem like the appropriate perspective
when analyzing these systems. Is there another approach? We suggest that the
notion of results achieved is more relevant. In the PD case, the result achieved
is the number of points scored.
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Under what circumstances would it make sense to think of an agent in terms
of results achieved? In [4] we discuss the nature of emergent entities. Static
entities persist at an energy equilibrium in energy wells; but the more interest-
ing dynamic entities persist only so long as they can extract energy from their
environment.

Unfortunately most agent-based computer models either ignore the issue of
energy or treat it very superficially. We believe that an integrated theory of
energy and information would clarify how information flows enable evolution.
A real-world agent would be a dynamic entity that embodied some software.
If, through a random mutation, such an entity developed an enhanced abil-
ity to extract information from its environment then it will be more likely to
survive and reproduce. What evolves in this model is an enhanced ability to
extract information from the environment. The need of dynamic entities for en-
ergy drives evolution toward increasingly more powerful informational processing
capabilities.13

In this picture, information is being extracted from the environment at two
levels. Each individual extracts information from the environment, which it
processes as a way to help it find energy. Very simple real-life examples are plant
tropisms and bacterial tendencies to follow nutrient gradients. More interest-
ingly, the evolutionary process itself extracts information from the environment,
which it then encodes (in DNA) as the ”program” which individual agents use
to process information from their environment. Thus the real intelligence is in
the program, and the real information extracting activity is the evolutionary
process that constructs the program.14

Can evolution itself evolve? Is there something that will enable an entity to ex-
tract information from the environment more effectively? Modern society stores
information about how to process information from the environment as science.
Can we go beyond science? Can the scientific process itself evolve? Science is the
process of constructing mechanisms to extract and process information from the
environment. Since science is a thought process, tools that enable us to exter-
nalize and improve our scientific thought processes will enhance our ability to
do science.

5 Conclusion

An environmentally sophisticated agent-based paradigm involves agents, each of
which has the computing capability of a Turing machine, situated in an environ-
ment that reveals itself reluctantly. Such an agent in a real-world environment is
like an Oracle machine, with nature as the oracle. Combining agents with dynamic
entities yields real-world agents, which (a) must extract energy from their envi-
ronment to persist and (b) embody software capable of processing information
13 This seems to answer the question of whether evolution will always produce intelli-

gence. It will whenever increased intelligence yields enhanced access to energy.
14 Systems that have attempted to model this process have failed because their envi-

ronments are too poor.



56 R. Abbott

flows from the environment. The agent-based thesis is that this paradigm repre-
sents how, at the start of the 21st century, we think about our place with the world.

Acknowledgment. Many of the ideas in this paper were elaborated in discus-
sions with Debora Shuger.
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Abstract. We present a new simulation of Turing machines by peptide-
antibody interactions. In contrast to a simulation presented previously,
this new technique simulates the computation steps automatically and
does not rely on a “look-and-do” approach, in which the Turing machine
program would be interpreted by an extraneous computing agent. We
determine the resource requirements of the simulation. Towards a precise
definition for peptide computing we construct a new theoretical model.
We examine how the simulations presented in this paper fit this model.
We prove that a peptide computing model can be simulated by a Turing
machine under certain conditions.

1 Introduction

To use peptide-antibody interactions as a model of computation was proposed
by H. Hug et al. [5]. In [1] it was shown that the model is universal; the proof
of this result uses a simulation of the computation of a Turing machine by
peptide-antibody interactions. While that simulation is clearly correct, some of
its properties are not convincing intuitively. We address some of these issues in
this paper.

A peptide is a sequence of amino acids attached by covalent bonds called
peptide bonds. A peptide consists of recognition sites, called epitopes, for the
antibodies. A peptide can contain more than one epitope for the same or different
antibodies. With each antibody, which attaches to a specific epitope, a binding
power is associated, called its affinity. When antibodies compete for recognition
sites – which may overlap in the given peptide – then the antibodies with greater
affinity have a higher priority.

Replacing an antibody by one with a greater affinity can be considered a
computational step in a re-writing process: the antibody with smaller affinity is
removed – affinity-based removal – and an antibody with greater affinity attaches
to the epitope which became free. Antibodies can also be removed by adding ex-
cess epitopes – epitope-based removal. In the sequel, the term peptide computing
refers to computational processes based on these as elementary operations.
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In [5], it was shown how to solve the satisfiability problem using peptide
computing. To show that peptide computing is universal, a simulation of Tur-
ing machines by peptide computing was presented in [1]. The simulation uses
epitope-based removal. Thus peptide computing is at least as powerful as Turing
computing. Whether the converse holds true depends on the precise limitations
imposed on the model for peptide computing and, in particular, on the way how
affinity is modelled.

The simulation of a Turing machine M by peptide computing as presented
in [1] is not totally convincing in the following sense:

First, the simulation relies on an extraneous computing agent to interpret the
computation of the Turing machine step-by-step and to simulate the observed
behaviour by appropriate peptide-antibody interactions. This agent could, for
instance, be a human taking notes of the steps of the Turing machine and select-
ing and mixing the required molecules. Thus, the simulation is not automatic;
it is a “look-and-do” method. “Extraneous computing agents” are part of any
formal model of computation, even the Turing model, – usually hidden in the
definition of computational steps. The important issue is to limit the “power”
of this agent.

Second, the simulation requires an unbounded number of epitopes and anti-
bodies. The length of the peptide sequence in terms of epitopes and the number
of antibodies needed are both approximately proportional to the amount sM of
space used for the Turing computation.

As mentioned above, the size of the alphabets used in the simulation is not
bounded, but depends on the size of the input and the specific computation.
To encode the antibodies and epitopes over a finite alphabet would increase
the resource and time requirements. It seems that a comma-free encoding, even
a solid code, would be needed to identify the locations of the epitopes in the
peptide uniquely (see [7] for a survey of the relevant properties of codes). In
this case, for s epitopes or antibodies to be encoded over an alphabet with r
symbols, r > 1, about c1 logr s symbols are needed per epitope or antibody for
some c1 > 1. Thus, the size of the peptide is Θ(sM(w) · log sM(w)). Moreover,
also the time bound increases by a factor of Θ(log sM(w)) to account for the
search for and the handling of, the appropriate epitopes and antibodies. While
such an encoding is mathematically feasible, it is not clear at this point, whether
this idea would work in the bio-chemical setting.

In the present paper we address the first of the short-comings of the previous
simulation. We propose a method for encoding the definitions of the transition
in the interactions between peptides and antibodies. We prepare the peptide se-
quences and antibodies in such a way that they select and execute the transitions
automatically. The new model relies primarily on affinity-based removal, with
epitope-based removal restricted to intermediate operations in the simulation.
Moreover, we present a formal model of peptide computing which enables us to
express the converse simulation, that of a peptide system on a Turing machine.
Within this model one can formulate the precise conditions for this simulation
to be possible.
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Whether our formal model is adequate for the bio-chemical realities will not
be discussed in this paper. In many ways, the abstraction is an extreme sim-
plification. Hence one may be justified to conclude for our work that peptide
computing is at least as powerful as Turing computing, if not more powerful. It
is not clear whether the constraints making the models equivalent can be made
to hold true bio-chemically. Moreover, it is certainly also important to investigate
the actual usability of a peptide computing system.

Our paper is structured as follows. In Section 2 we review some notational
conventions. The new proposal is presented in some detail in Section 3. In Sec-
tion 4 we construct a theoretical model for peptide computing. We also examine
how the proposed new simulation fits with our theoretical model in the Section
5. In Section 6 we present the simulation of a peptide computing model by a
Turing machine under certain conditions. We summarize and discuss the results
in Section 7. The reader should consult [1] to compare the simulation methods
and to determine how the former simulation fits in the framework of the new
model.

2 Notation, Basic Notions

For a set S, |S| denotes the cardinality of S. When S is a singleton set, S = {x}
say, we write x instead of {x}. For sets S and T , consider a relation � ⊆ S × T .
Then �−1 is the relation �−1 = {(t, s) | (s, t) ∈ �} and, for s ∈ S, �(s) = {t |
(s, t) ∈ �}. We use the notation � : S ◦→ T to denote a partial mapping of S
into T . In that case dom � is the subset of S on which � is defined. The notation
� : S → T means that S is a total mapping of S into T , hence dom� = S in this
case.

Let S be a non-empty set. A multiset on S is a pair M = (I, ι) where I is a
set, the index set, and ι is a mapping of I into S, the indexing. A multiset M
is non-empty, if I is non-empty; it is finite if I is finite. For s ∈ S, the number
|{i | i ∈ I, ι(i) = s}| is the multiplicity of s. When I is countable, we write
M = {mi | i ∈ I} where mi = ι(i) is implied. With this notation, it is possible
that mi = mj while i �= j for i, j ∈ I. We use the standard symbols for set
theoretic operations also for multisets. However, on multisets, union is disjoint
union and both intersection and set difference take multiplicities into account.
Formally this can be handled by appropriate operations on the index sets.

By N and N0 we denote the sets of positive integers and of non-negative
integers, respectively. The set B = {0, 1} represents the set of Boolean values.
For n ∈ N0, n = {i | i ∈ N0, i < n}. Thus, for example, 0 = ∅, 1 = {0} and,
in general, n = {0, 1, . . . , n − 1}. By R we denote the set of real numbers, and
R+ = {r | r ∈ R, r ≥ 0}.

An alphabet is a non-empty set. Let X be an alphabet. Then X∗ is the set of
all words overX including the empty word λ, andX+ = X∗\{λ}. For a wordw ∈
X∗, |w| is its length. Any word u ∈ X∗ with w ∈ uX∗ is a prefix of w; let Pref(w)
be the set of prefixes of w; the words in Pref+(w) = {u | u ∈ X+, w ∈ uX+} are
the proper prefixes of w. Similarly, a word u ∈ X∗ with w ∈ X∗uX∗ is an infix of
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w, Inf(w) is the set of infixes of w and Inf+(w) = {u | u ∈ X+, u ∈ Inf(w), u �= w}
is the set of proper infixes of w. A language over X is a subset of X∗. For a
language L over X and Y ∈ {Pref,Pref+, Inf, Inf+}, Y (L) =

⋃
w∈L Y (w).

Let L be a language over X and w ∈ X∗. An L-decomposition of w is a
pair of sequences (u0, u1, . . . , uk), (v0, v1, . . . , vk−1) of words in X∗ such that
u0v0u1v1 · · · vk−1uk = w, v0, v1, . . . , vk−1 ∈ L and u0, u1, . . . , uk /∈ X∗LX∗. A
language in X+ such that every word has a unique L-decomposition is called a
solid code [7]. Consider w ∈ X+ of length n, say w = x0x1 · · ·xn−1 with xi ∈ X
for i = 0, 1, . . . , n − 1. An L-decomposition of w as above can be specified by
a set of pairs {(il, jl) | l = 0, 1, . . . , k − 1} such that, for l = 0, 1, . . . , k − 1,
vl = xil

xil+1 · · ·xjl
. Let ∂L(w) be the set of L-decompositions when represented

in this way. Let D(L) = {(w, d) | w ∈ X∗, d ∈ ∂L(w)} be the set of words
together with all their L-decompositions.

A (deterministic) Turing machine is a construct M = (Q,Σ, δ, q0, F, �) such
that Q is a finite non-empty set of states, Σ is a finite non-empty alphabet with
Q∩Σ = ∅, q0 ∈ Q is the start state, F ⊆ Q is the set of final states, � is the blank
symbol, � /∈ Σ ∪Q, and δ : Q× (Σ ∪ �) → Q× (Σ ∪ �) × {L, R} is the (partial)
transition function. Here L and R, for ‘left’ and ‘right’, denote the directions of
the movement of the read-write head on the Turing tape. We assume that δ(q, a)
is undefined for all q ∈ F . We generally denote the movement of the head by
d ∈ {L, R}. For more details on Turing machines see [4]. If M is Turing machine
we represent the language accepted by M as L(M). We denote the space and
time complexity functions of M as sM and tM.

In the sequel, it is sometimes convenient to have special symbols for states
and inputs. In this case, let Q = {q0, q1, . . . , qm−1} and Σ = {a0, a1, . . . , al−1}.

3 Automatic Simulation of a Turing Machine by Peptides

In the simulation presented in [1], the transition function of the Turing machine
is not encoded in the peptide system. To remedy this we not only need such an
encoding but also a method for looking up instructions and for their execution.

Theorem 1. Let M = (Q,Σ, δ, q0, F, �) be a Turing machine. There is a simu-
lation of M by peptide computing with the following properties:

(1) There is a constant c > 0, independent of M, such that the number of
peptide-antibody interactions needed for the simulation of a computation step
of M is no greater than c. As a consequence, the number of peptide antibody
interactions needed for the simulation of a computation of M on input w ∈ Σ∗

is no greater than c · tM(w).
(2) The number of peptide sequences needed for the simulation of a computa-

tion of M on input w ∈ Σ∗ is in Θ(sM(w)); moreover the number of antibodies
needed is in Θ((|Q|+ |Σ|) · sM(w)).

Proof Idea. We assume that M has only a single final state. This restriction is
easily lifted at the cost of a more complicated argument.
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We use five sets of peptide sequences: a set T to simulate the cells of the tape
of M; P to hold the program of M; S to synchronize the operation; and two
sets I1 and I2 for carrying out intermediate steps.

Each sequence in T consists of four epitopes and uniquely denotes a cell on
the tape of M. For cell i, the epitopes are e(T )

i,1 , . . . , e
(T )
i,4 such that the peptide is

p
(T )
i = e

(T )
i,1 xie

(T )
i,2 yie

(T )
i,3 with e(T )

i,4 = xie
(T )
i,2 yi for some words xi and yi. The set T ,

with antibodies attached to the epitopes represents the respective configuration
of the Turing machine.

The set P contains a peptide sequence for each pair (q, a) ∈ Q×Σ for which
δ(q, a) is defined. It will capture the transition applied when M is in state q
and reading the symbol a. A typical peptide sequence in P has three epitopes
e
(P )
(q,a),1, e

(P )
(q,a),2 and e(P )

(q,a),3, and has the form p
(P )
(q,a) = e

(P )
(q,a),1e

(P )
(q,a),2 with e(P )

(q,a),3 ∈
Inf+(p(P )

(q,a)) and which intersects both e(P )
(q,a),1 and e(P )

(q,a),2.
The set S contains a peptide sequence for each pair (q, a) ∈ Q×Σ for which

δ(q, a) is defined. It will control the execution of a transition step. A peptide
sequence in S has the form p

(S)
(q,a) = z(q,a)e

(S)
(q,a),1e

(S)
(q,a),2. It has the three epitopes

e
(S)
(q,a),1, e

(S)
(q,a),2 and the whole sequence itself is an epitope.

Finally the sets I1 and I2 contain peptide sequences as follows. Each se-
quence in I1 contains epitopes e(I1)

(q,a),1 and e(I1)
(q,a),2 and is represented by p(I1)

(q,a) =

e
(I1)
(q,a),1e

(I1)
(q,a),2. All the peptide sequences in I1 are initialized with antibodies Aq,a

which bind to the epitope e(I1)(q,a),1. Each sequence in the set I2 contains only one

epitope, namely e(I2)
(q,a), and is represented by p(I2)

(q,a) = e
(I2)
(q,a).

If, as in [1], one starts the simulation with a space bound s initially, one has:
|T | = s using 4s epitopes; |P | = |Q| · |Σ| using 3|P | epitopes; |S| = |Q| · |Σ|
using 3|S| epitopes; |I1| = |Q| · |Σ| with 2|I1| epitopes; and |I2| = |Q| · |Σ| with
|I2| epitopes. Of course, each of the sets would contain multiple copies of each
peptide sequence.

We now describe the encoding of the transition function δ of M. Suppose
δ(q, a) = (q′, a′, D) for D ∈ {L, R}. Then, we have a peptide sequence p(P )

(q,a) in

P with antibodies Aq′ and Aa′,D attached to it at epitopes e(P )
(q,a),1 and e

(P )
(q,a),2,

respectively. Thus each sequence in P encodes the transition for state q and
symbol a; The antibodies Aq′ and Aa′,D need to be ‘read,’ that is, removed, to
execute the transition. To achieve this we need to use the sets I1, I2, and S as
explained further below. If q′ ∈ F then the antibody Aq′ will be a labelled one;
this helps to know that the simulation has halted.

Now we describe the encoding of a configuration of M. For each cell i we
record its contents, what its neighbours are and, possibly the state of M if the
cell is currently the one being scanned. For each cell i we need antibodies Ai

which attach to the epitopes e(T )
i+1,1 and e(T )

i−1,3; moreover, for each a ∈ Σ we need

an antibody Aa which can attach to xie
(T )
i,2 yi. Thus, if a ∈ Σ ∪ � is the current

contents of cell i, then p(T )
i has Ai−1, Aa and Ai+1 attached to its epitopes e(T )

i,1 ,
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e
(T )
i,4 and e

(T )
i,2 , respectively. We assume, as before, that peptide sequences for

enough cells are available to conduct the computation. Those not occupied by
input symbols are initialized to �.

For q ∈ Q and a ∈ Σ ∪ �, the antibodies Aq and (Aa or Aa,D) can attach to
the epitopes e(S)

(q,a),1 and e(S)
(q,a),2 in S, respectively.

1. For sequences in T : We need antibodies Aa,D and Aj . The epitope of Aa,D

is xie
(T )
i,2 yi. The epitopes of Aj are e(T )

j,2 , e(T )
k,3 and e

(T )
l,1 where k = j − 1 and

l = j + 1 with more affinity for Aj to the epitope e(T )
j,2 . The affinity of Aj is

greater than that of Aa,D.
2. For sequences in S: We need antibodies Bq,a. The epitope of Bq,a is p(S)

(q,a).
The antibodies Aq and Aa,D from T also attach to this sequence. The epitopes
for Aq and Aa,D are e(S)

(q,a),1 and e
(S)
(q,a),2 respectively. The affinity of Bq,a is

greater than that of antibodies Aq and Aa,D.
3. For sequences in I1: We need antibodies Aq,a and Ba,D. The epitope of Aq,a

is e(I1)(q,a),1. The epitope of Ba,D is e(I1)(q,a),2. The antibodies Aq and Aa,D from T

also attach to this sequence. The epitope of Aq is e(I1)
(q,a),1 and the epitope for

Aa,D is e(I1)
(q,a),2. The affinity of Aq is greater than that of Aq,b for all b ∈ Σ.

The affinity of Ba,D is greater than that of Aa,D.
4. For sequences in I2: The antibodies Aq,a and Aa,D attach to the sequences

in I2. The epitope for both of them is e(I2)(q,a). The affinity of Aa,D is greater
than that of Aq,a

5. For sequences in P : We need antibodies Aq and Aa,D which are initialized to
these. The antibodies Aq,a also attach to these. The epitopes of Aq, Aa,D and
Aq,a are e(P )

(q,a),1, e
(P )
(q,a),2 and e(P )

(q,a),3. The affinity of Aq,a is greater than that
of both the antibodies Aq̄ and Aā,D̄ provided there is a transition δ(q, a) =
{(q̄, ā, D̄)}.

We can now define the simulation of a step of M by peptide computing. Each
such step consists of a cycle of reactions which is initiated by having antibodies
Aq for the current state and antibodies Ai for the current cell floating; moreover,
we assume that no antibodies are attached to the peptide sequences in S and I2.
Thus, to start the computation, we add antibodies Aq0 and A1 corresponding
to the configuration in which M is in the initial state q0 and is reading the first
cell.

Suppose now that the floating antibodies are Aq and Ai and that the antibody
Aa is attached to p(T )

i where a ∈ Σ ∪ �. Then Ai attaches to the epitope e(T )
i,2 by

greater affinity and removes Aa. Hence the two antibodies Aq and Aa attach to
their respective epitopes e(S)

(q,a),1 and e(S)
(q,a),2 in S. The presence of two antibodies

binding to a peptide sequence S denotes the fact the machine is about to select
the transition from the sequences in P1 and P2.

Now we flush out all the unnecessary epitopes and antibodies still floating in
the liquid.
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Next, we add antibodies Bp,b for all p ∈ Q and b ∈ Σ which have a greater
affinity than the corresponding Ap and Ab. They attach to the epitopes
z(q,a),1e

(S)
(q,a),1e

(S)
(q,a),2 for a ∈ Σ ∪ �. This will remove the antibodies Aq and Aa

from the sequence in S.
The antibody Aq which is removed from the sequence in S attaches to a

sequence in I1 to the epitope e(I1)(q,a),1 with greater affinity and removes the ini-
tialized antibodies Aq,b for all b ∈ Σ. The antibody Aa attaches to the epitope
e
(I1)
(q,a),2. The antibodies Aq,b attach to the sequences in I2 with the epitope e(I2)(q,a).

Now we add antibodies Bb for all b ∈ Σ and these attach to the epitopes e(I1)(q,a),2
with greater affinity and remove the antibody Aa. The antibody Aa then attach
to sequences in I2 with higher affinity to the epitopes e(I2)

(q,a) and removes the
antibody Aq,a. Hence with these sequence operations two distinct antibodies Aq

and Aa denoting the state of the system and the symbol to be read has given
rise to a single antibody Aq,a which denotes both the state and the symbol to
be read. This takes care of circular arguments arising from cycles in M.

Now Aq,a attaches to the epitope e(P )
(q,a),3 with greater affinity and removes the

antibodies Aq̄ and Aā,D̄ where q̄ and ā are such that δ(q, b) = (q̄, b̄, D̄). Hence the
antibodies Aq̄ and Ab̄,D̄ which were previously initialized with this sequence are
now set free. For this to work, Aq,a is assumed to have a greater affinity than
both Aq̄ and Aā,D̄ for all q̄ ∈ Q, B̄ ∈ Σ ∪ � and D̄ ∈ {L, R}.

Hence the system has selected the correct antibodies corresponding to the next
state as Aq̄ and the symbol to be rewritten as Aā,D̄. The antibody Aq̄ attaches to
the sequence in S and waits for the antibody denoting the next symbol. Here we
add excess epitopes e(T )

i,2 which will eventually remove antibody Aj (supposing

the jth cell has been read by M) from the peptide sequence p
(T )
j . Now the

antibody Aā,D̄ attaches to the sequence in T to the epitope xie
(T )
i,2 yie

(T )
i,3 if D̄ = R

or to the epitope e(T )
i,1 xie

(T )
i,2 yi if D̄ = L. This in turn removes the antibody Aj+1

(if it is a right move) or Aj−1 (if it is a left move) which will bind to the next
peptide sequence in the epitope e(T )

i,2 and remove the antibody denoting the next
symbol to be read from the sequence, say Ab. The antibody Ab attaches to the
sequence in S. Thus the system is ready for the next transition. This process
continues until a labelled antibody attaches to a sequence in S. After this step
there will be various epitopes and antibodies unnecessarily floating in the liquid;
hence we have to flush out all the floating molecules.

This peptide system accepts a string if and only if it is accepted by the Turing
machine. In the procedure above, for the peptide sequences in T we need 3sM +
2 · |Σ| antibodies; for the sequences in S, |Q| · |Σ|; for I1, |Σ| + |Q| · |Σ|; for
I2 there is no need for new antibodies; and for the sequences in P , the exact
number depends on the transition table of M.

The simulation presented above requires an infinite number of antibodies
which, however is recursively enumerable. We can consider antibodies as be-
ing encoded over a finite alphabet (at least in our formal model). For instance
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the set A could be an infinite solid code over a finite alphabet Y with |Y | ≥ 2;
such codes exist as shown in [6].

To encode n symbols by a solid code the maximal code word length is in
Θ(log n) [8]. Thus we obtain the following corollary of Theorem 1.

Corollary 1. Let M = (Q,Σ, δ, q0, F, �) be a Turing machine. There is a sim-
ulation of M by peptide computing with the following properties:

1. Only a finite alphabet is required,
2. A step is simulated in Θ(log sM) steps.

4 Modelling Peptide Computations

In this section we give a rigorous definition of peptide computing. This will allow
us to determine, precisely, the capabilities and limitations of this computing
paradigm.

It is usually easy to invent a new model of computation. Moreover, showing
its universality only requires the simulation of Turing machines. To show that
the proposed model is no more powerful than Turing machines is often quite a
bit harder. For some pitfalls see the insightful discussion of computing models
in [3]. The explication of the notion of computability as provided, for instance,
by Church’s (or Turing’s) Thesis, regardless of its precise wording, is, essentially,
recursive as it explains intuitive computability by steps which are, themselves,
assumed to be intuitively computable and a program, the execution of which, is
intuitively computable. On the one hand, the random access machine, in which
an unbounded number of memory cells holding integers of unbounded size is
used, can be shown to be polynomially equivalent to a Turing machine – although
it is not obvious at all that moving around unbounded information is intuitively
computable. On the other hand, a very simple look-alike of a Turing machine
decides problems which are undecidable when using a Turing machine. Indeed,
it is a simple consequence of a result of [3] that any degree of non-computability
can be achieved just by the topology of the memory structure, that is, the way
by which addresses are calculated.

A modelM of computation definesM -computability. By computability without
reference to a specific model we mean intuitive computability. Thus Church’s The-
sis (or Turing’s Thesis), in its simplest form, states that Turing-computability and
computability are equivalent notions. In [2] some of the subtleties of Church’s The-
sis are pointed out, which, for our purposes, are not relevant, however. Moreover,
there are various stronger versions of the thesis, which we do not need here either,
but which are useful as axioms in other contexts. By [1], Turing computability im-
plies peptide computability; hence, using Church’s Thesis, computability implies
peptide computability.

To study the converse implication a significantly more formal definition of
peptide computing is needed. In the sequel we present a formal model. Whether
this model is adequate for the bio-chemical realities, is a matter of further re-
search.
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Definition 1. A peptide computer is a quintuple P = (X,E,A, α, β) where X
is a finite alphabet (to represent basic building units like molecules), E ⊆ X+ is
a language (to represent epitopes), A is a countable alphabet with A ∩ X∗ = ∅
(to represent antibodies), α ⊆ E×A is a relation (such that a ∈ α(e) means that
antibody a can be attached to epitope e), β : E × A → R+ is a mapping such
that β(e, a) > 0 if and only if (e, a) ∈ α (denoting the affinity between epitope e
and antibody a).

Consider a word w ∈ X+ and d ∈ ∂E(w). An A-attachment is a partial mapping
τ : d ◦→ A. Suppose w = x0x1 · · ·xn and d = {(il, jl) | l = 0, 1, . . . , k − 1}. Then
τ defines a word wτ ∈

(
X ∪ (E × A)

)∗ as follows: For all l = 0, 1, . . . , k − 1, if
(il, jl) ∈ dom τ replace e = xil

xil+1 · · ·xjl
by (e, τ(il, jl)) in w. Such a mapping

τ is legal if (e, τ(il, jl)) ∈ α for all l. When τ is legal then wτ ∈ (X ∪ α)∗ and τ
is called an A-attachment to w. For a language L ⊆ X+, let T (L) be the set of
A-attachments to words in L. Conversely, a word z ∈ (X ∪ α)∗ defines a word
w ∈ X∗ and a set of A-attachments τ , such that wτ = z. Note that w is uniquely
defined, but that τ may apply to several d ∈ ∂Ew.

Consider a word z ∈ (X ∪α)+ and a symbol a ∈ A. Let w and τ be such that
wτ = z. Moreover, let w = x0x1 · · ·xn with x0, x1, . . . , xn ∈ X . Consider any
d ∈ ∂Ew with dom τ ⊆ d and any d′ ∈ ∂Ew. For (i, j) ∈ d′ let ei,j = xixi+1 · · ·xj .
We say that a dominates (i, j) in z when the following condition is satisfied: For
all (i′, j′) ∈ d such that {i′, i′+1, . . . , j′}∩{i, i+1, . . . , j} �= ∅ and (i′, j′) ∈ dom τ ,

β(ei,j , a) > β(xi′xi′+1 · · ·xj′ , τ(i′, j′)).

In such a case, all pairs (i′, j′) ∈ d with {i′, i′ + 1, . . . , j′} ∩ {i, i+ 1, . . . , j} �= ∅
are said to be affected. If a dominates (i, j) in z, the following basic reaction will
happen forming a multiset R(z, a): For each affected pair (i′, j′), a copy of τ(i′j′)
is put into R(z, a); let Y ⊆ dom τ be the set of pairs which are not affected and
let d′′ ∈ ∂Ew be such that Y ∪ (i, j) ⊆ d′′. Define the A-attachment τ̄ : d′′ ◦→ A
by τ̄ (p) = τ(p) for p ∈ Y and τ̄(i, j) = a. Put a copy of wτ̄ into R(z, a). The
multiset R(z, a) is the result of a basic reaction between z and a. If a is binding
with z and some symbols are released from z when R(z, a) is formed then we
denote the set of released symbols by Out(z, a). If nothing is released when a
binds then Out(z, a) will be {λ}.

We also need to consider basic reactions between words z, z′ ∈ (x∪α)+, where
z and z′ need not be different. Again we want to define the resulting multiset
R(z, z′). We use w, d and τ as above. Now z′ = w′

τ ′ where τ ′ : d′ ◦→ A for some
d′ ∈ ∂Ew

′. Consider (i′, j′) ∈ dom τ ′ and let a = τ ′(i′j′). Moreover, let e′i′,j′ be
the infix of w′ which starts at i′ and ends at j′. Suppose a dominates (i, j) in
z for some (i, j) ∈ d̄ ∈ ∂Ew and β(ei,j , a) > β(e′i′,j′ , a), then the reaction is as
follows.

Since the basic reaction between two words z and z′ are with respect to a,
we represent the result of this reaction by Ra(z, z′). This reaction takes place
in two steps: first the reaction SepRa(z, z′) takes place. This reaction produces
the multiset containing z, z′′ and a, where z′′ is defined as follows: let τ ′′ be the
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restriction of τ ′ to dom τ ′ \ (i′j′). and z′′ is defined as z′′ = w′
τ ′′ . Then the next

step is the reaction resulting in R(z, a). As in the previous reaction Out(z1, z2)
denotes the set of symbols released from z1 when a binds with z1. Note that
when z and z′ are the same occurrence of a word then SepRa(z, z′) consists only
of z′′ and a.

The basic reactions resulting in R(z, a) and Ra(z, z′) take place only when
there is instability. Instability between z and a occurs when a dominates (i, j) ∈
∂Ew where z = wτ . Likewise instability between two words z and z′ occurs when
there is a symbol a = τ ′(i′, j′) where (i′, j′) ∈ dom τ ′ and τ ′ : d′ ◦→ A for some
d′ ∈ ∂E(w′).

We also note that one basic reaction can trigger a sequence of reactions; this
might even lead to a cycle which in turn will not lead to any stable configuration.

In the sequel we refer to R(z, a) (or Ra(z1, z2)) as the result of a basic reaction
or as a multiset, whichever is appropriate to the context.

Definition 2. Let P be a peptide computer. A peptide configuration is a finite
multiset of words in (X ∪ α)+ ∪A.

We denote a peptide configuration as P . To a peptide configuration P , a basic
reaction may apply when instability exists in the configuration, that is, there
may be z, z′ ∈ (X∪α)+ or a ∈ A which occur in P such that R(z, a) differs from
the multiset consisting of z and a or R(z, z′) differs from the multiset consisting
of z and z′. In either case a basic reaction non-deterministically removes (z, a)
or (z, z′) from P and adds R(z, a) or R(z, z′), respectively. Let R(P ) be the set
of peptide configurations which result from P through one basic reaction. For
n ∈ N0, let Rn be the n-fold iteration of R.

Definition 3. A peptide configuration P is said to be stable if R(P ) = {P}.

If Rn(P ) consists of stable configurations only, for some n, define R∗(P ) =
Rn(P ) for this n. Otherwise, R∗(P ) = ∅. Let Γ be the class of stable peptide
configurations.

To define peptide computations, we also need the following objects:

Definition 4. A peptide instruction has the form +P or −P where P is a
peptide configuration.

When P ′ is a peptide configuration and I is a peptide instruction then

I(P ′) =
{
P ′ ∪ P, if I = +P ,
P ′ \ P, if I = −P ,

with union and difference taken as multiset operations.

Definition 5. A peptide program is a pair (P, χ) where P is a mapping from
Γ ∗ into the set of peptide instructions and χ is a (halting) function χ : Γ → B.
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Definition 6. Let P be a peptide computing model and let (P, χ) be a peptide
program for P. A peptide computation is a word c = c0c1 · · · ct ∈ Γ ∗ with
c0, c1, . . . , ct ∈ Γ such that

ci ∈ R∗(P(c0c1 · · · ci−1)(ci−1)
)

for i = 0, 1, . . . , ct.
A computation as above starts with c0 ∈ R∗(P(λ)) and ends when χ(ci) = 1

for the first time.

To encode inputs we need a mapping γ from inputs to Γ , an input encoding; we
also need an output decoding, that is, a mapping δ from Γ to outputs.

Definition 7. A function f from inputs to outputs is peptide computable if
there is a peptide program P, a computable input encoding γ of inputs into P(λ)
and a computable decoding of Γ into outputs such that, for every x ∈ domf ,
there is a peptide computation c0c1 · · · ct with c0, c1, . . . , ct ∈ Γ and γ(x) = c0
satisfying χ(ct) = 1 and δ(ct) = f(x).

5 How the New Simulation Fits the Peptide Model

We describe how our proposed simulation of Section 3 can be carried out by the
peptide model presented in Section 4.

We define the sets X , E, A and describe the relations α and β as below:

1. X = {X1, X2, · · · , X20};
2. E = {e(T )

i,1 , e
(T )
i,2 , e

(T )
i,3 , xie

(T )
i,2 yi, e

(T )
i,2 yie

(T )
i,3 , e

(T )
i,1 xie

(T )
i,2 yi} ∪ {e(S)

(q,a),1, e
(S)
(q,a),2}∪

{e(I1)(q,a),1, e
(I1)
(q,a),2} ∪ {e

(I2)
(q,a)} ∪ {e

(P )
(q,a),1, e

(S)
(q,a),2, e

(P )
(q,a),3}; and

3. A = {Aa,D, Ai, Bq,a, Aq,a, Ba,D, Aq}.

4. α =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Aa, e
(T )
i,4 ), (Aa,L, e

(T )
i,1 e

(T )
i,4 ), (Aa,R, e

(T )
i,4 e

(T )
i,3 ), (Ai, e

(T )
i,2 ),

(Ai+1, e
(T )
i,3 ), (Ai−1, e

(T )
i,1 ), (Aq, e

(S)
(q,a),1), (Aa, e

(S)
(q,a),2),

(Aa,D, e
(S)
(q,a),2), (Bq,a, p

(S)
(q,a)), (Aq, e

(I1)
(q,a),1), (Aq,a, e

(I1)
(q,a),1),

(Aa,D, e
(I1)
(q,a),2), (Ba,D, e

(I1)
(q,a),2), (Aq,a, e

(I2)
(q,a)), (Aa,D, e

(I2)
(q,a)),

(Aq, e
(P )
(q,a),1), (Aa,D, e

(P )
(q,a),2), (Aq,a, e

(P )
(q,a),3), (Ai, ē

(T )
i,2 )

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
5. To define β, we can assign a positive real number (non-zero) from R to

each pair in α such that the affinity relation described in Section 3 is valid.
Together with this we define β such that Ai dominates ē(T )

i,2 .
6. If ck is some configuration then the halting function χ(ck) is defined as 1 if a

labelled symbol Aq is present in the configuration ck with the sequence in S.

The sequences used for this simulation are the same ones as in Section 3.
The only new sequences are ē(T )

i,2 . Hence we have five sets of sequences over X
denoted by T , P , S, I1 and I2.

The number of symbols in A is infinite. The peptide sequences S and I2 are
used as they are. The other sequences are extended to sequences over (X ∪ α)∗.



68 M.S. Balan and H. Jürgensen

First we take the sequences from P : these sequences are extended to sequences
over (X ∪ α)∗ as follows:

p
(P )
(q,a) = (e(P )

(q,a),1, Aq′)(e(P )
(q,a),2, Aa′,D).

These sequences are formed for every transition δ(q, a) = (q′, a′, D). Every se-
quence in T representing a cell of the Turing machine is formed as follows: for
p
(T )
i ∈ T ,

p
(T )
i = (e(T )

i,1 , Ai−1)(xie
(T )
i,2 yi, Aa)(e(T )

i,3 , Ai+1).

The sequence p(I1)
(q,a) ∈ I1 is extended as follows:

p
(I1)
(q,a) = (e(I1)

(q,a),1, Aq,b)e
(I1)
(q,a),2.

Hence we have sets of sequences T , P and I1 over (X ∪ α)∗ and sets S and I2
over X : these sequences are taken as the initial configuration. Processing starts
by adding two symbols Aq0 and A1 to the initial configuration. In general let Aq

and Ai be the symbols added to the configuration; assume that Aa is present
with the sequence p(T )

i . Now two reactions take place resulting in R(Aq, p
(S)
(q,a))

and R(Ai, p
(T )
i ). The first reaction changes p(S)

(q,a) into,

p
(S)
(q,a) = (e(S)

(q,a),1, Aq)e
(S)
(q,a),2.

The second reaction results in Out(Ai, p
(T )
i ) = {Aa}. It changes p(T )

i into,

p
(T )
i = e

(T )
i,1 xi(e

(T )
i,2 , Ai)yie

(T )
i,3 .

After these reactions the free symbol Aa triggers a new reaction resulting in
R(Aa, p

(S)
(q,a)), that is, the sequence

p
(S)
(q,a) = (e(S)

(q,a),1, Aq)(e
(S)
(q,a),2, Aa).

Then symbols Bp,b are added for all p ∈ Q and b ∈ Σ; this stimulates reactions
resulting in R(p(S)

(p,b), Bp,b). Hence the sequences p(S)
(p,b) become,

p
(S)
(p,b) = (zp,be

(S)
(q,a),1e

(S)
(q,a),2, Bp,b)

with Out(p(S)
(q,a), Bq,a) = {Aq, Aa}; when b �= a or p �= q, Out(p(S)

(p,b), Bp,b) = {λ}.
The presence of symbols Aq and Aa paves the way for two more reactions leading
to R(p(I1)

(q,a), Aq) and R(p(I1)
(q,a), Aa). Hence the sequence p(I1)

(q,a) changes to,

p
(I1)
(q,a) = (e(I1)

(q,a),1, Aq)(e
(I1)
(q,a),2, Aa)
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with Out(p(I1)
(q,a), Aq) = {Aq,b} for all b ∈ Σ. The symbols Aq,b which are released

give rise to reaction resulting in R(p(I2)
(q,a), Aq,b) and the sequence p(I2)

(q,a) becomes,

p
(I2)
(q,a) = (e(I2)

(q,a), Aq,b).

Then we add symbols Bb for all b ∈ Σ which results in R(p(I1)
(q,a)Bb), and

p
(I1)
(q,a) = (e(I1)

(q,a),1, Aq)(e
(I1)
(q,a),2, Bb)

with Out(p(I1)
(q,a), Bb) = {Aa}. The presence of the symbolAa leads to R(p(I2)

(q,a), Aa)

and p(I2)
(q,a) becomes

p
(I2)
(q,a) = (e(I2)

(q,a), Aa)

with Out(p(I2)
(q,a), Aa) = {Aq,a}.

Hence two symbols denoting the state q and the input symbol a, through a
sequence of reactions have been transformed into a single symbol Aq,a which
denotes both the state and the input symbol of the machine.

The symbol Aq,a stimulates the reaction resulting in R(p(P )
(q,a), Aq,a) and this

gives rise to the sequence

p
(P )
(q,a) = x(e(P )

(q,a),3, Aq,a)y

with Out(p(P )
(q,a), Aq,a) = {Aq̄, Aā,D̄} where q̄ and ā are such that δ(q, a) = (q̄, ā, D̄).

Hence the peptide computer has reached the next state q̄ from q and selected
the symbol to be rewritten as ā. Now we add sequences ē(T )

i,2 which leads to

R(p(T )
i , ē

(T )
i,2 ) (where Ai dominates ē(T )

i,2 ) and results in the separation of Ai from

p
(T )
i and the sequence ē(T )

i,2 becomes (ē(T )
i,2 , Ai). This creates space for Aā,D̄ to

bind to it by the reaction resulting in R(p(T )
i , Aā,D̄). Hence the sequence p(T )

i

becomes,
p
(T )
i = (e(T )

i,1 , Ai−1)(xie
(T )
i,2 yie

(T )
i,3 , Aā,D̄)

with Out(p(T )
i , Aā,D̄) = {Ai+1} when D̄ = R; when D̄ = L,

p
(T )
i = (e(T )

i,1 xie
(T )
i,2 yi, Aā,D̄)(e

(T )
i,3 , Ai+1)

with Out(p(T )
i , Aā,D̄) = {Ai−1}

Now the system is ready to carry out the next transition of the machine. The
system continues as above until it reaches at a labelled symbol Aq in a sequence
in S.

6 Simulation of Peptide System by Turing Machine

We present an informal construction of a Turing machine which simulates a
peptide computer under certain conditions.
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Theorem 2. For every peptide computer P = (X,E,A, α, β) with the following
conditions:

1. E and A are (at least) computably enumerable;
2. α is decidable;
3. β and χ are computable;

and for every computably enumerable peptide program P for P, there is a Turing
machine simulating the peptide computations of P according to P.

Proof Idea. Just invoking Church’s Thesis is insufficient for a proof, tempting
as this may be. We need to prove that peptide computing under the restrictions
as stated is not more powerful than intuitive computing. Let P = (X,E,A, α, β)
be the peptide system. We simulate P by a multi-tape Turing machine M.

The instruction set is encoded on the first tape. The encoding distinguishes
between a symbol a ∈ A and a sequence z ∈ (X ∪ α)∗. In the sequence repre-
sentation we have delimiters for the epitopes. Thus the machine can recognize
the beginnings and ends of epitopes. Let z = z1(e, a)z2 be a sequence, where
z1, z2 ∈ (X ∪ α)∗, (e, a) ∈ α and β(e, a) = n, encoded on the tape. Assume that
e = x1x2 · · ·xk, then the encoding of e would be (x1, a, n)(x2, a, n) · · · (xk, a, n).

On the second tape we encode, for each of a ∈ A, the set of all epitopes to
which it can attach. This set of epitopes is ordered in decreasing order of the
relation ≥. Since α is a poset relation it consists of finite number of chains (at
any point of time there will be only a finite number of epitopes to which a symbol
can attach). Each chain is arranged in decreasing order and the chains can be
ordered arbitrarily. When encoding this on the tape each chain has markers for
the start and the end.

The third tape stores the configuration of the system and the output of each
reaction which might trigger more reactions. The fourth tape encodes the func-
tion χ.

Let C be the configuration stored on the third tape. Let a ∈ A be the symbol
which is now added to the configuration C. This amounts to a reaction resulting
in R(z, a) in P . We explain the simulation of this reaction by M.

First a is copied onto the third tape; then we look, on the second tape, for all
epitopes to which a can attach; we non-deterministically select a chain and, for
each epitope in that chain, we check the configuration on the third tape for an
occurrence; if there is such an occurrence we check if there are symbols bound
to that site already; the affinity is compared; if it is greater then the symbol
presently attached is erased and a is written onto the tape together with its
affinity as a triplet using the same representation as on the first tape. Then the
system P can check if there is any possibility of further reactions as described
further below. If there is no epitope found in the configuration or if there is no
possibility of further reactions then the next instruction is chosen according to
the program P.

Suppose we add z2 to the configuration C (let z1 be a sequence in C and a ∈ A
is attached to an epitope in z1); hence in one of the possible cases Ra(z1, z2) is
obtained if a dominates any epitope in z2. In the sequel we describe how this
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reaction is simulated by M. First the sequence is copied to the third tape. Then
the symbol a is erased from the sequence z1 and it is written in z2 corresponding
to its epitope. In general, if this reaction has to happen for each sequence z2 put
into C and for each symbol attaching with it we need to check with all the other
sequences z1 in C if it dominates any epitope. Likewise for each z1 in C and for
each symbol a attached to it we need to check if a dominates any epitope in z2.
If either of this is true then the corresponding reactions resulting in Ra(z1, z2) or
Ra(z1, z2) take place. After these checks the system has to examine if there are
any further reactions (1) by checking if there are any outputs from the reactions;
and (2) by checking for other reactions.

After finishing each instruction we can check in the fourth tape if χ(C) = 1.
If so then the machine halts.

7 Conclusion

We presented a new model for simulating a Turing machine using peptide-
antibody interactions. In this model we encoded the transition functions of Tur-
ing machine in the sequences themselves so that the simulation automatically
selects the next transition. Moreover, we established conditions on a peptide
computer to be simulated by a Turing machine.

References

1. M. S. Balan, K. Krithivasan, Y. Sivasubramanyam: Peptide computing: Universal-
ity and computing. In N. Jonoska, N. Seeman (editors): Proceedings of Seventh
International Conference on DNA based Computers, LNCS 2340. 290–299, 2002.

2. A. M. Ben-Amram: The Church-Turing thesis and its look-alikes. Sigact News
36(3) (2005), 113–114.

3. S. A. Cook, S. O. Aanderaa: On the minimum computation time of functions. Trans.
Amer. Math. Soc. 142 (1969), 291–314.

4. J. E. Hopcroft, J. D. Ullman: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

5. H. Hug, R. Schuler: Strategies for the developement of a peptide computer. Bioin-
formatics 17 (2001), 364–368.

6. H. Jürgensen, M. Katsura, S. Konstantinidis: Maximal solid codes. Journal of
Automata, Languages and Combinatorics 6 (2001), 25–50.

7. H. Jürgensen, S. Konstantinidis: Codes. In G. Rozenberg, A. Salomaa (editors):
Handbook of Formal Languages, 1. 511–607. Springer-Verlag, Berlin, 1997.

8. H. Jürgensen, S. Konstantinidis, N. H. Lâm: Asymptotically optimal low-cost solid
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Abstract. In this paper we approach the problem of computing the n–
th power of the transition matrix of an arbitrary Markov chain through
membrane computing. The proposed solution is described in a semi–
uniform way in the framework of P systems with external output. The
amount of resources required in the construction is polynomial in the
number of states of the Markov chain and in the power. The time of
execution is linear in the power and is independent of the number of
states involved in the Markov chain.

1 Introduction

In the field of the Natural Computing, two areas that have attracted a great
interest are the molecular computing based on DNA and, more recently, the
cellular computing with membranes. One of the advantages of these models with
respect to the classic ones is the massive parallelism that in these models is
implemented in a natural way and allowing the simultaneous execution of many
operations in an unit of the time.

The molecular computing provides a model of computation oriented to pro-
gram and so, the computing devices proposed follow a structure similar to the
classic algorithms, in which the operations realized in each step depend on the
result obtained in the previous step. However, the cellular computing with mem-
branes provides a model of computation oriented to machines. In this model,
the computing devices, similar to a Turing machine, start from an initial con-
figuration (a structure of membranes with certain chemical compounds in its
compartments) which evolves by means of rules of the system (abstraction of
the different chemical reactions which are allowed in membranes). The rules are
applied according to a specific semantic, that is to say, the execution of such
devices modifies the content of their components until arriving in a halting state
in which the machine does not evolve any longer.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 72–85, 2006.
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The calculation of the natural powers of the transition matrix of a finite and
homogenous Markov chain is important, because it allows us to estimate its limit
in the case that it is convergent and so, we can know the stationary distribution
of the process. This subject have been treated in [1], where two algorithms based
on DNA are described that only allow us to obtain an estimation of the powers.
These algorithms run in polynomial time and require a polynomial amount of
resources.

In this work this problem is approached within the framework of cellular
computing with membranes, and an exact solution is provided in time which is
linear in the order of the power and is independent of the number of states of
the Markov chain. The amount of used resources is polynomial in the power and
the number of states.

The paper is structured as follows. In the next section, basic concepts con-
cerning Markov chains and P systems that are necessary for the development of
the work are introduced. In Section 3, a P system with external output solving
(in a semi–uniform way) the problem to find the n–th power of the transition
matrix, and a formal verification of the system is presented; the run time and
the resources required in the description of the system are analyzed.

2 Preliminaries

2.1 Markov Chains

Roughly speaking, a (discrete–time) Markov chain is a discrete–time stochastic
process such that the past is irrelevant for predicting the future given knowledge
of the present, i.e., the conditional distribution of what happens in the future
given everything up to now depends only on the present state, and not otherwise
on the past.

More formally, a finite Markov chain is a sequence {Xt : t ∈ N} of random
variables verifying the following (Markov) property:

P (Xt+1 = j/X0 = i0, X1 = i1, . . . , Xt = it) = P (Xt+1 = j/Xt = it).

That is, given the present, the future does not depend of the past: the result of
each event only depends on the result of the previous event.

The range of the random variables is called the state space of the Markov
chain, and the value of Xt is interpreted as the state of the process at time t.
We suppose that the state space is finite, that is, the random variables only take
the discrete values e1, . . . , ek, called states or results.

Hence, a Markov chain {Xt : t ∈ N} provides a random process by a change
of states or results e1, . . . , ek in certain instants of discrete times t ∈ N, and
where the result of each event only depends on the result of the previous event.
So, such a Markov chain is characterized by the conditional distribution

pij(t) = P (Xt = ej/Xt−1 = ei), for all t ≥ 1,



74 M. Cardona et al.

which is called the transition probability of the process, providing one–step tran-
sition probability.

The matrix P (t) = (pij(t))1≤i,j≤k is called the transition matrix associated
with the Markov chain {Xt : t ∈ N}. The term (i, j) of the transition matrix is
the probability of a transition from the state ei to the state ej . For that, every
element of the transition probability matrix is positive, and the sum of each row
is 1 because for all i (1 ≤ i ≤ k) we have

k∑
j=1

pij(t) =
k∑

j=1

P (Xt = ej/Xt−1 = ei) = 1.

Hence, the matrix of transition probabilities associated with a Markov chain
is stochastic. Moreover, every stochastic matrix can be viewed as the matrix of
transition probabilities of some Markov chain.

We say that a finite Markov chain {Xt : t ∈ N} with k states is stationary
or homogeneous if the transition probabilities do not depend on time, that is,
∀t ∀i, j (1 ≤ i, j ≤ k → pij(t) = pij(t+ 1)). In this case, we denote pij(t) = pij ,
for all t ∈ N, and P = (pij)1≤i,j≤k = P (t) = (pij(t))1≤i,j≤k .

The probability of a transition in two, three or more steps is derived in a
natural way from the one–step transition probability and the Markov property.
From the law of total probability, for all t ≥ 2 we have:

p
(2)
ij (t) =

k∑
r=1

P (Xt = ej/Xt−1 = er) · P (Xt−1 = er/Xt−2 = ei).

That is, p(2)
ij (t) =

k∑
r=1

p
(1)
rj (t) · p(1)

ir (t− 1), where p(1)
ij (t) = pij(t), for all t ≥ 1.

Then, if the Markov chain is homogeneous, the transition matrix for the two–
steps transition is:

(p(2)
ij )1≤i,j≤k = (

k∑
r=1

p
(1)
rj · p

(1)
ir )1≤i,j≤k = P · P = P 2.

In general, for each n ≥ 2 we have

p
(n)
ij (t) =

k∑
r=1

p
(1)
rj (t) · p(n−1)

ir (t− 1)

If the Markov chain is homogeneous, then the transition matrix for the n–steps
transition is:

(p(n)
ij )1≤i,j≤k = (

k∑
r=1

p
(1)
rj · p

(n−1)
ir )1≤i,j≤k = Pn−1 · P = Pn.
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The conditions ⎧⎪⎨⎪⎩
p
(1)
ij = pij

p
(n)
ij =

k∑
r=1

p
(1)
rj · p

(n−1)
ir , for all n ≥ 2

are called the Kolmogorov–Chapmann equations associated with the homoge-
neous Markov chain, whose transition matrix is (pij)1≤i,j≤k.

A finite and homogeneous Markov chain {Xt : t ∈ N} where the set of states
is {e1, . . . , ek}, is characterized by the initial probabilities qj

0 = P (X0 = ej)
(1 ≤ j ≤ k) to get the state ej in the first event, and the transition probability
matrix P = (pij)1≤i,j≤k.

We denote the initial probabilities by means of the vector q0 = (q10 , . . . , qk
0 ),

and for each n ≥ 1, we consider the vector qn = (q1n, . . . , q
k
n), where qj

n (1 ≤ j ≤
k) the probability to reach the state ej after n–steps of the random process.

Notice that we have qn = q0 ·Pn, for each n ≥ 1. So, in order to determine the
distribution qn it is enough to study the matrix Pn. Moreover, the limit of the
sequence {Pn : n ∈ N} of these matrices allows us to obtain the distribution
limit in the case it exits. For more details see [2] and [3].

Markov chains have many applications. For example, they are used in chem-
ical engineering (modelling the probabilities in chemical reactions and in flow
systems), in biology (to model processes that are analogous to biological popu-
lations), in bioinformatics (for coding region/gene prediction), in physics (for
simulation of particle systems and spatial statistics), in telecommunications
(using Markov models for queues), and in geostatistics (in two or three di-
mensional stochastic simulations of discrete variables conditional on observed
data).

2.2 Membrane Systems

Membrane computing is an emergent branch of Natural Computing initiated
in the fall of 1998 by Gh. Paun by a paper circulated at that time on web
and published in 2000 [4]. Since then, the area has simply flourished and it
has received important attention from the scientific community. In February
2003, the Institute for Scientific Information, ISI, has mentioned the foundational
paper [4] as a fast breaking paper in Computer Science, and in October 2003, the
domain itself was qualified by ISI as fast emerging research front in computer
science.

This new model of computation has been introduced with the aim of defining
a computing device, called P system, which abstracts from the structure and
functioning of living cells, as well as from the organization of cell in tissues,
organs, and other higher order structures.

The main syntactic ingredients of a P system are the following:

– A cell–like membrane structure consisting of several membranes arranged hi-
erarchically inside a main membrane, the skin, and delimiting compartments
or regions.
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– Multisets of symbol–objects corresponding to chemical substances present in
the compartments of a cell.

– Evolution rules corresponding to chemical reactions that can take place in-
side the cell, and that permit evolve the objects in a synchronous maximally
parallel manner.

The semantics of P systems is defined through a non–deterministic and synchro-
nous model (a global clock is assumed). A configuration of a P system consists
of a membrane structure and a family of multisets of objects associated with
each region of the structure. At the beginning, there is a configuration called the
initial configuration of the system. We get transitions from one configuration
of the system to the next one by applying the evolution rules to the objects
placed inside the regions, in a non–deterministic, maximally parallel manner (in
each region all objects that can evolve must do it). A computation of the system
is a (finite or infinite) sequence of configurations such that each configuration
–except the initial one– is obtained from the previous one by a transition. A
computation which reaches a configuration where no more rules can be applied
to the existing objects and membranes, is called a halting computation. The re-
sult of a halting computation is usually defined through the multiset associated
with a specific output membrane (or the environment, as it is the case in this
paper) in the final configuration.

More formally, a P system with external output of degree m is a tuple Π =
(Γ, μ,M1, · · ·Mm, (R1, ρ1), . . . , (Rm, ρm)) where:

– Π is an alphabet. Its elements are called objects.
– μ is a membrane structure consisting of m membranes, with the membranes

injectively labeled with 1, 2, . . . ,m.
– Mi, 1 ≤ i ≤ m, are strings which represent multisets over Γ associated with

the regions 1, . . . ,m of μ .
– Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over Γ and ρi, 1 ≤ i ≤ m, are

partial orders over R. The sets Ri and ρi are associated with the region i of
μ. An evolution rule is a pair (u, v), which usually write in the form u→ v,
where u is a string over Γ and v is a string over Γ × ({here, out} ∪ {inj :
1 ≤ j ≤ m}).

In this way, a comprehensive and systematic interdisciplinary research area was
developed, a high generality and versatility, where models can be devised for a
large range of processes where compartmentalization and multiset processing are
natural ingredients. Thus, although the initial goal of membrane computing was
only to learn new ideas, tools, and techniques from cell biology to the help of
standard computers, much in the same way as, e.g., evolutionary computing sug-
gests algorithms to be implemented on electronic computer, membrane comput-
ing became a new framework for building models for a large variety of processes,
especially from biology (cell biology, tissues, populations of bacteria, controlling
networks of complex phenomena, tumor growth, etc.), but also from linguistics,
management, with several applications to computer science (computer graphics,
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approximative solutions to computationally hard problems, modelling parallel
architectures, cryptography).

Most of these models were proven to be computationally universal, able to
compute whatever a Turing machine can compute. In the case when an enhanced
parallelism is available, by means of membrane division, string-object replication,
or membrane creation, polynomial (often linear) time solutions to NP-complete
problems were found.

In many variants, P systems are seen as devices of a generative nature, that
is, from a given initial configuration several distinct computations may be de-
veloped, in a non–deterministic manner, producing different outputs.

In this paper we work with P systems with external output and that perform
computing tasks. For example, if a certain natural number, n, is encoded by
the multiplicity of a special object in the initial configuration and we consider
the cardinality of the multiset contained in the environment of a halting con-
figuration as the result of a successful computation, then we can say that the
system computes a partial function from natural numbers onto the set of natural
numbers.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer to [5] for details.

3 Computing the Natural Power of a Markov Chain

The calculation of the natural powers of the transition matrix of a finite and
homogenous Markov chain allows us to estimate its limit in the case that it is
convergent and so, we can know the stationary distribution of the process.

In this section, the natural powers of such Markov chains within the framework
of the cellular computing with membranes are computed. The solution provided
is linear in the order of the power and is independent of the number of states of
the Markov chain. The amount of used resources is polynomial in the power and
the number of states. Also, a formal verification of the solution is presented.

3.1 Designing a P System

For each Markov chain and each natural number, n ≥ 2, we construct a P system
with external output computing the n–th power of the matrix Pk associated
with the Markov chain. Therefore, we provide a semi–uniform solution to this
problem, that is, we give a family Π = {Π(Pk, n) : n ∈ N} such that:

– There exists a deterministic Turing machine working in polynomial time
which constructs the system Π(Pk, n) from n ∈ N.

– The output of the P system Π(Pk, n) encodes the n–th power of the matrix
Pk.

Let Pk = (pij)1≤i,j≤k be the matrix of the transition probabilities associated
with a finite and homogeneous Markov chain of order k. Having in mind that
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pij are real numbers in [0, 1] and P systems only work with natural numbers, we
have to prefix the approximation to be used in order to represent those numbers
in our system. In this paper, as an example, we will work with an approximation
to one decimal digit, reason why several objects appear with a factor of 10 in
their multiplicities in the description of our system (similarly, if we want to work
with m decimal digits, then we must use a 10m factor).

Let n ≥ 2 be a natural number. We define a P system of degree 3 with external
output,

Π(Pk, n) = (Γ (Pk, n), μ(Pk, n),M1,M2,M3, R)

associated with the matrix Pk and the natural number n, computing the n–th
power of Pk, as follows:

– Working alphabet:

Γ (Pk, n) = {s(r)
ij : 1 ≤ i, j ≤ k, 0 ≤ r ≤ n} ∪ {sij : 1 ≤ i, j ≤ k} ∪

{tij : 1 ≤ i, j ≤ k} ∪ {t(r)
iju : 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ n− 1} ∪

{pij : 1 ≤ i, j ≤ k} ∪ {ci : 1 ≤ i ≤ n− 1}.

– Membrane structure: μ(Pk, n) = [1 [2 [3 ]3 ]2 ]1.
– Initial multisets:

M1 =M2 = ∅;

M3 = {tk·10·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10ii : 1 ≤ i ≤ k} ∪ {c1}.
– The set R of evolution rules consists of the following rules:

• Rules in the skin membrane labeled by 1:

{t(r)10pij

iju −→ (t10pij

ij s
(r+1)10pij

uj , in2) : 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ n− 1} ∪
{sij −→ (sij , out) : 1 ≤ i, j ≤ k}.

• Rules in the membrane labeled by 2:

{s(r)10
ij t

10pj1
j1 . . . t

10pjk

jk −→ (t(r)10pj1
j1i . . . t

(r)10pjk

jki , out) : 1 ≤ i, j ≤ k, 0 ≤
r ≤ n− 1} ∪ {s(n)

ij −→ (sij , out) : 1 ≤ i, j ≤ k}.
• Rules in the membrane labeled by 3:

{s(0)ii −→ s
(0)10
ii : 1 ≤ i ≤ k} ∪ {tij −→ t10ij : 1 ≤ i, j ≤ k} ∪ {ci −→

ci+1 : 1 ≤ i ≤ n− 2} ∪ {cn−1 −→ δ}.

3.2 An Overview of Computations

The P system Π(Pk, n) works in the following way. At the beginning, the skin
membrane and the membrane labeled by 2 are empty and the membrane labeled
by 3 has: (a) objects tij (1 ≤ i, j ≤ k) encoding the elements pij of the trasition
matrix of the Markov chain; (b) objects sii (1 ≤ i ≤ k) encoding the states ei

of the chain; and (c) objects ci (1 ≤ i ≤ n − 1) interpreted as counters used to
know when a suitable number of objects tij and sii have been produced.
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In the n − 2 first steps only rules in the internal membrane labeled by 3
are applied. During this (so called) first stage, each object s(0)ii and each tij
is replicated 10 times in each transition step. Furthermore, in membrane 3 a
counter ci appears, initialized to c1, whose subindex increase by one unit during
each step. For that reason, after those n − 2 steps, membrane 3 contains the
multiset of objects s(0)·10

n−1

ii t
k·10n−1·pij

ij , and the counter cn−1. In the (n−1)–th

step, each object s(0)ii and each object tij are replicated 10 times and, moreover,
membrane 3 is dissolved, and its content pass to the internal membrane labeled
by 2.

Therefore, when the system is going to execute the n–th step, the skin mem-
brane continues being empty and the content of the internal membrane labeled
by 2 is s(0)·10

n

ii t
k·10n·pij

ij .
In a second stage, in each (n− 1 + 2m+ 1)–th step, with m ∈ N, only rules

of membrane 2 will be applied; they will consume all the objects s(m)
ij and some

objects tij , sending to the skin certain objects tjui. In each (n − 1 + 2m)–th
step, with m ∈ N−{0}, only rules in the skin are applied (because there do not
exist objects sij in membrane 2), sending new objects tij and objects s(m)

ij to
membrane 2. This second phase finalizes when m = n− 1.

A third stage begins with the execution of the (3n − 1)–th step, after which
the skin membrane will be empty and in membrane 2 objects s(n)

ij appear. Then,

the execution of the rules s(n)
ij −→ (sij , out) sends these objects to the skin

membrane, and in the following step, they sent to the environment by means of
the rules skin sij −→ (sij , out). In this moment, no rule of the system will be
applicable and so, the configuration obtained after the (3n+ 1)–th step will be
a halting one. Moreover, in the last step, the content of the environment will

be s
w

(n)
ij

ij .

Finally, it will remain to show that the multiplicity w(n)
ij of the object sij is

equal to the (i, j)–term of the matrix 10n · Pn
k .

3.3 Formal Verification

Throughout this section we are going to justify that the system Π(Pk, n) is
deterministic and that the computation of the system codifies in the environment
of the halting configuration the n–th power of the transition probability matrix,
Pk, associated with a finite and homogeneous Markov chain.

First of all, let us list the necessary resources to build the system Π(Pk, n)
from the matrix Pk and the natural number n ≥ 2:

– Size of the alphabet: (n+ 1)k2 + k2 + k2 + nk3 + k2 + (n− 1) ∈ Θ(nk3).
– Sum of the sizes of initial multisets: ≤ 10k3 + 10k + 1 ∈ Θ(k3).
– Maximum of rules’ lengths: 20k + 10 ∈ Θ(k).
– Number of rules: nk3 + k2 + nk2 + k2 + k + k2 + (n− 1) ∈ Θ(nk3).
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Bearing in mind the recursive description of the rules and that the amount of
resources is polynomial in n · k, it is possible to construct the system Π(Pk, n)
from the matrix Pk and the natural number n ≥ 2, by means of a deterministic
Turing machine working in polynomial time.

Next, we are going to define in a recursive manner in r the expression w
(r)
ij ,

for each i, j such that 1 ≤ i, j ≤ k, that it is necessary in the formal verification
of the system that will follow.

Definition 1. Let w0 = 10n. For each i, j such that 1 ≤ i, j ≤ k, we define:

w
(0)
ij =

{
w0 if i = j,
0 if i �= j.

w
(r+1)
ij =

k∑
u=1

w
(r)
iu puj , for r < n.

Remark: In the case of a finite and homogeneous Markov chain, with states
e1, . . . , ek and transition matrix Pk, the definition of the values wr+1

ij can be
interpreted as an abstraction of the equation of Kolmogorov–Chapmann: the
transition of the state ei to the state ej in (r + 1) steps (that is, the value
w

(r+1)
ij ) is obtained from all the transitions in r steps of the state ei to any state

eu (that is, the value w(r)
iu ), with 1 ≤ u ≤ k, multiplied by the transitions of eu

to ej in only one step (that is, the value puj).

Next, we establish the relation that exists between the elements w(r)
ij and the

term (i, j) of the matrix 10n · P r
k , for each 1 ≤ r ≤ n.

Proposition 1. Let n ≥ 2. Let us denote B(r, n) = 10n · P r
k , for each r such

that r ≥ 1, r ≤ n. If B(r, n) = (b(r,n)
ij )1≤i,j≤k, then

∀r ≥ 1 (r ≤ n −→ ∀i, j (1 ≤ i, j ≤ k −→ b
(r,n)
ij = w

(r)
ij )).

Proof. By induction on r.
The base case, r = 1, follows from the following remark:

w
(1)
ij =

k∑
u=1

w
(0)
iu psj = w0pij = 10npij = b

(1,n)
ij .

Let r ≥ 1 be such that r < n and suppose that b(r,n)
ij = w

(r)
ij is verified.

Bearing in mind that 10n ·P r+1
k = 10nP r

k ·Pk = B(r, n) ·Pk, we deduce that for
each i, j such that 1 ≤ i, j ≤ k:

b
(r+1,n)
ij =

k∑
u=1

b
(r,n)
iu puj

h.i.=
k∑

u=1

w
(r)
iu puj = w

(r+1)
ij . �

For each m ∈ N, we denote by Cm the configuration of the system obtained after
the execution of m steps. For each label l ∈ {1, 2, 3}, we denote by Cm(l) the
multiset of objects contained in the membrane labeled by l in the configuration
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Cm. Also, we denote by Cm(env) the content of the environment of the system
in the configuration Cm.

From the definition of the system Π(Pk, n), the following holds: C0(1) =
C0(2) = ∅ , and C0(3) = {tk·10·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10ii : 1 ≤ i ≤ k} ∪ {c1}.
Next, we are going to determine the content of the different membranes of

the system along the execution, and will show that after 3n+1 steps the system
reaches a halting configuration, in which the content of the environment is the

multiset of objects {sw
(n)
ij

ij : 1 ≤ i, j ≤ k}.
In the proof of the following result, it can be checked that there exists only

one multiset of rules applicable to a non halting configuration in each transition
step, and, consequently, the membrane system Π(Pk, n) is deterministic.

Theorem 1. Let n ≥ 2.

(a) For each r ∈ N such that 1 ≤ r ≤ n− 2 we have:⎧⎨⎩
Cr(1) = ∅
Cr(2) = ∅
Cr(3) = {tk·10

r+1·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10
r+1

ii : 1 ≤ i ≤ k} ∪ {cr+1}
(b) Moreover, we have:{

Cn−1(1) = ∅,
Cn−1(2) = {tk·10

n·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10
n

ii : 1 ≤ i ≤ k}
(c) For each m ∈ N such that m < n we have:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C(n−1)+2m(1) = ∅,
C(n−1)+2m(2) = {tkw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s(m)w(m)
ij

ij : 1 ≤ i, j ≤ k},

C(n−1)+2m+1(1) = {t(m)w(m)
ij pju

jui : 1 ≤ i, j, u ≤ k},
C(n−1)+2m+1(2) = {tkw0pij− k

u=1 w
(m)
ui pij

ij : 1 ≤ i, j ≤ k}.
(d) The configuration C3n+1 is a halting one, and

C3n+1(env) = {sw
(n)
ij

ij : 1 ≤ i, j ≤ k}.

Proof.

(a) If n = 2, then the result is obvious. Let us assume now that n > 2. We will
prove the result by induction on r.
In order to prove the base case r = 1, let us observe that from the initial
configuration of the system we have: C0(1) = C0(2) = ∅, and C0(3) =
{tk·10·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10ii : 1 ≤ i ≤ k} ∪ {c1}.
Then, only in the membrane 3 of configuration C0 there are applicable rules
and, concretely, the rules: s(0)ii −→ s

(0)10
ii , for 1 ≤ i ≤ k; tij −→ t10ij , for

1 ≤ i, j ≤ k, and c1 −→ c2.
Therefore, C1(1) = C1(2) = ∅, and C1(3) = {tk·10

2·pij

ij : 1 ≤ i, j ≤ k} ∪
{s(0)10

2

ii : 1 ≤ i ≤ k} ∪ {c2}.
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Let r be a natural number such that 1 ≤ r < n − 2. Let us suppose that
Cr(1) = Cr(2) = ∅, and Cr(3) = {tk·10

r+1·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10
r+1

ii :
1 ≤ i ≤ k} ∪ {cr+1}.
Let us note that only in membrane 3 there are applicable rules to configura-
tion Cr; specifically, this is the case for the rules: s(0)ii −→ s

(0)10
ii , for 1 ≤ i ≤ k;

tij −→ t10ij , for 1 ≤ i, j ≤ k; and cr+1 −→ cr+2 (recall that r < n − 2 and
then r + 1 < n− 1).

Therefore, Cr+1(1) = Cr+1(2) = ∅, and Cr+1(3) = {tk·10
r+2·pij

ij : 1 ≤ i, j ≤
k} ∪ {s(0)10

r+2

ii : 1 ≤ i ≤ k} ∪ {cr+2}.
(b) Directly from (a) it follows that: Cn−2(1) = Cn−2(2) = ∅, and Cn−2(3) =

{tk·10
n−1·pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)10
n−1

ii : 1 ≤ i ≤ k} ∪ {cn−1}.
In order to obtain the configuration Cn−1, let us note that only in membrane
3 there are applicable rules, namely the rules: s(0)ii −→ s

(0)10
ii , for 1 ≤ i ≤ k;

tij −→ t10ij , for 1 ≤ i, j ≤ k; and cn−1 −→ δ.

Then, membrane 3 will be dissolved, its content goes to membrane 2, and
the counters ci disappear. Thus, Cn−1(1) = ∅, and Cn−1(2) = {tk·10

n·pij

ij :

1 ≤ i, j ≤ k} ∪ {s(0)10
n

ii : 1 ≤ i ≤ k}.
(c) We prove the result by induction on m. From (b) we deduce that Cn−1(1) =

∅, and Cn−1(2) = {tkw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s(0)w
(0)
ij

ij : 1 ≤ i, j ≤ k}.

From Definition 1 we have

{s(0)10
n

ii : 1 ≤ i ≤ k} = {s(0)w0
ii : 1 ≤ i ≤ k} = {s(0)w

(0)
ij

ij : 1 ≤ i, j ≤ k}.

Let us note that only in the internal membrane (labeled by 2) there are
applicable rules to configuration Cn−1, namely the rules:

s
(0)10
ij t

10pj1
j1 . . . t

10pjk

jk −→ (t(0)10pj1
j1i . . . t

(0)10pjk

jki , out), for 1 ≤ i, j ≤ k.

By the condition of maximal parallelism, each one of these rules will be

applied
w

(0)
ij

10 times. Consequently, we have:⎧⎨⎩Cn(1)={t(0)w
(0)
ij pju

jui : 1 ≤ i, j, u ≤ k},
Cn(2)={tkw0pij−w0pij

ij : 1 ≤ i, j ≤ k}={tkw0pij− k
u=1 w

(0)
ui pij

ij : 1 ≤ i, j ≤ k}.

Hence, the result is true for m = 0. Let m < n− 1. Let us suppose that the
result holds for m, that is,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C(n−1)+2m(1) = ∅,
C(n−1)+2m(2) = {tkw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s(m)w(m)
ij

ij : 1 ≤ i, j ≤ k},

C(n−1)+2m+1(1) = {t(m)w(m)
ij pju

jui : 1 ≤ i, j, u ≤ k},
C(n−1)+2m+1(2) = {tkw0pij− k

u=1 w
(m)
ui pij

ij : 1 ≤ i, j ≤ k}.
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In order to obtain the configuration C(n−1)+2m+2, let us note that there are
applicable rules only in the skin membrane of the configuration C(n−1)+2m+1.
Specifically, this is the case with the rules:

t
(m)10pju

jui −→ (t10pju

ju s
(m+1)10pju

iu , in2), for 1 ≤ i, j, u ≤ k.

By the condition of maximal parallelism, each one of these rules will be

applied
w

(m)
ij pjs

10pjs
=

w
(m)
ij

10 times. Hence,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C(n−1)+2m+2(1) = ∅,
C(n−1)+2m+2(2) = {tkw0pij− k

u=1 w
(m)
ui pij

ij : 1 ≤ i, j ≤ k} ∪
{tw

(m)
1i pij+···+w

(m)
ki pij

ij : 1 ≤ i, j ≤ k} ∪
{s(m+1)w(m)

i1 p1j+···+w
(m)
ik pkj

ij : 1 ≤ i, j ≤ k}

= {tkw0pij

ij : 1 ≤ i, j ≤ k} ∪{s(m+1)w(m+1)
ij

ij : 1 ≤ i, j ≤ k}.

In order to obtain the configuration C(n−1)+2m+3, let us note that there
are applicable rules only in the internal membrane of the configuration
C(n−1)+2m+2 (let us recall that m < n− 1, and then m+1 < n). Specifically
the following rules can be applied:

s
(m+1)10
ij t

10pj1
j1 . . . t

10pjk

jk −→ (t(m+1)10pj1
j1i . . . p

(m+1)10pjk

jki , out), 1 ≤ i, j ≤ k.

By the condition of maximal parallelism, each one of these rules will be

applied
w

(m+1)
ij

10 times. Thus,⎧⎨⎩C(n−1)+2m+3(1) = {t(m+1)w(m+1)
ij pju

jui : 1 ≤ i, j, u ≤ k},
C(n−1)+2m+3(2) = {tkw0pij− k

u=1 w
(m+1)
ui pij

ij : 1 ≤ i, j ≤ k}.

Hence, the result is true for m+ 1, concluding the proof of (c).

(d) From (c) we deduce that⎧⎨⎩C3n−2(1) = {t(n−1)w(n−1)
ij pju

jui : 1 ≤ i, j, u ≤ k},
C3n−2(2) = {tkw0pij− k

u=1 w
(n−1)
ui pij

ij : 1 ≤ i, j ≤ k}.

Let us observe that there are applicable rules only in the skin membrane of
the configuration C3n−2. Specifically, the following rules can be used:

t
(n−1)10pju

jui −→ (t10pju

ju s
(n)10pju

iu , in2), for 1 ≤ i, j, u ≤ k.

By the condition of maximal parallelism, each one of these rules will be

applied
w

(n−1)
ij pjs

10pjs
=

w
(n−1)
ij

10 times. Consequently, we have:
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C3n−1(1) = ∅,
C3n−1(2) = {tkw0pij− k

u=1 w
(n−1)
ui pij

ij : 1 ≤ i, j ≤ k} ∪
{tw

(n−1)
1i pij+···+w

(n−1)
ki pij

ij : 1 ≤ i, j ≤ k} ∪
{s(n)w(n−1)

i1 p1j+···+w
(n−1)
ik pkj

ij : 1 ≤ i, j ≤ k}

= {tkw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s(n)w(n)
ij

ij : 1 ≤ i, j ≤ k}.
Then, to obtain the configuration C3n, it is possible to apply rules only in the
internal membrane of the configuration C3n−1, namely, the following rules:

s
(n)
ij −→ (sij , out), for 1 ≤ i, j ≤ k.

Thus, C3n(1) = {sw
(n)
ij

ij : 1 ≤ i, j ≤ k}, and C3n(2) = {tkw0pij

ij : 1 ≤ i, j ≤ k}.
Then, there are applicable rules only in the skin membrane of the configu-
ration C3n. Specifically, the following rules can be applied:

sij −→ (sij , out), for 1 ≤ i, j ≤ k.

Hence, we have: C3n+1(1) = ∅;C3n+1(2) = {tkw0pij

ij : 1 ≤ i, j ≤ k}, and

C3n+1(env) = {sw
(n)
ij

ij : 1 ≤ i, j ≤ k}.
Then, there is no other applicable rule to configuration C3n+1. Consequently,
this configuration is a halting one. �

Theorem 2. Let k ≥ 1, n ≥ 2. Let Pk = (pij)1≤i,j≤k be the transition matrix
associated with a finite and homogeneous Markov chain. Let Π(Pk, n) be the P
system defined in Section 3.1. The output of the only computation of this system
(that is, the content of the environment in the halting configuration) codifies the
matrix B(n, n) = 10n · Pn

k .

Proof. From (d) in Theorem 1 we deduce that the configuration C3n+1 of the
system Π(Pk, n) is a halting one and, moreover, the multiset associated with the

environment is C3n+1(env) = {sw
(n)
ij

ij : 1 ≤ i, j ≤ k}.
Directly from Proposition 1, with r = n, it follows that ∀i ∀j (1 ≤ i, j ≤ k →

w
(n)
ij = b

(n,n)
ij ). That is, the multiplicity w(n)

ij of the object sij in the environment

of the halting configuration C3n+1 coincides with b
(n,n)
ij , the (i, j)–term of the

matrix B(n, n) = 10n · Pn
k . �

4 Conclusions

In this paper, a deterministic P system with external output associated with
a natural number, n ≥ 2, and to a finite and homogeneous Markov chain, is
described. This P system provides the n–th power of the transition matrix as-
sociated with the Markov chain, encoding the power in the environment of a
halting configuration of the system.
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In [1] this problem has been addressed by means of a molecular DNA based
algorithms, giving an estimation of this power in polynomial time, and providing
a new approach to the problem of computing the limit of a Markov chain.

The solution presented in this work is placed in the scope of the cellular
computing with membranes. It is a semi–uniform solution, because for each
Markov chain and each power, a specific P system is designed. The solution is
efficient, because it is linear in the power and independent of the number of states
of the Markov chain. Furthermore, the amount of resources initially required to
construct the system is polynomial in the power and in the order of the Markov
chain.

The paper also provides a new example of formal verification of P systems
designed to solve a problem, following a specific methodology valid in some cases
like those considered in the paper. These examples are always interesting, for
instance, in order to find systematic processes of formal verification in a model
of computation oriented to machines, like the cellular model, in where it is well
known that the mechanisms of verification are often a very hard task.
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Abstract. A fundamental research area in relation with analyzing the
complexity of optimization problems are approximation algorithms. For
combinatorial optimization a vast theory of approximation algorithms
has been developed, see [1]. Many natural optimization problems involve
real numbers and thus an uncountable search space of feasible solutions.
A uniform complexity theory for real number decision problems was in-
troduced by Blum, Shub, and Smale [4]. However, approximation algo-
rithms were not yet formally studied in their model.

In this paper we develop a structural theory of optimization prob-
lems and approximation algorithms for the BSS model similar to the
above mentioned one for combinatorial optimization. We introduce a
class NPOR of real optimization problems closely related to NPR. The
class NPOR has four natural subclasses. For each of those we introduce
and study real approximation classes APXR and PTASR together with
reducibility and completeness notions. As main results we establish the
existence of natural complete problems for all these classes.

1 Introduction

Many important problems in mathematics and computer science are optimiza-
tion problems. In the framework of complexity theory a lot of such problems
are obtained as optimization versions of NP -complete decision problems. Typ-
ical examples are the TSP problem, the MAX-SAT problem or the Knapsack
problem in its optimization form. Such problems constitute the class NPO of
combinatorial optimization problems having an exponential size search space. An
important field of complexity theory is dealing with approximation properties
for such NP -hard optimization problems [1].

Another tradition of approximation algorithms comes from continuous math-
ematics. A typical example is Newton’s method for approximating a zero of a
function. Another one is the approximation of the number of solutions of a poly-
nomial system, being extremely important for numerical solution algorithms, see
[8] as an example for such investigations.
� Partially supported by the IST Programme of the European Community, under
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A structural complexity theory for real number problems along the lines of
the classical study of decision problems was developed in [4], where the BSS
model was introduced. It is a hypercomputer in that the possibility to use real
number machine constants implies the computability of any function f : N → N
in the model. In [4] the authors study a real version NPR of NP together with
an analogue PR = NPR? of the famous P versus NP question. A typical NPR-
complete problem is QPS which asks for deciding whether a system of quadratic
real polynomials has a common real zero. Real number decision problems have
been extensively studied in recent years, see [11] and [7] for getting a good impres-
sion. Given the immense importance of the theory of approximation algorithms
within the Turing model it is tempting to develop a similar framework for real
number optimization problems as well. A typical example of such a problem is
to approximate the maximal number of commonly solvable real polynomials in a
system. This problem has strong relations to a potential real version of the PCP
theorem as shown in [9]. Another such problem is to minimize the norm of a root
of a given polynomial; good bounds on this minimum (i.e. good approximations)
are of huge importance for algorithms dealing with problems in semi-algebraic
geometry [2,10].

In the present paper we start the structural investigation of approximation
algorithms for certain classes of real number optimization problems. The idea
is to take the classical notions of approximation algorithms, polynomial approx-
imation schemes and AP-reducibility as starting point and transfer them in a
suitable way to the real number model. However, in doing so one has to take
care of some intrinsic differences. One of the most fundamental such difference is
that our optimization problems constituting the real class NPOR allow for un-
countable sets of feasible solutions. This is a quite natural aspect of real number
problems, yet it leads to some subtle differences when defining the main con-
cepts below. As example, approximation algorithms will not have to compute a
feasible solution with an approximation ratio but only guarantee its existence.
This requirement is intrinsically related to the impossibility of computing in
general polynomial roots exactly by a BSS algorithm. Another difference will
be that NPOR naturally gives rise to study four subclasses, each representing
a different kind of optimization problems. We introduce as well real versions
APXR, PTASR of the corresponding discrete classes; they similarly have four
natural subclasses.

Our main results are as follows: For each of the four classes that define
NPOR, APXR, and PTASR we show the existence of complete problems under
a real version of AP-reducibility (to be defined). This holds both for maximiza-
tion and minimization problems. In addition, some further completeness results
for natural optimization problems will be given.

Our hope is that the present approach will serve as starting point for an
analysis of approximation algorithms for real number optimization problems as
fruitful as the corresponding approach for combinatorial optimization problems.
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2 Definitions

In the BSS model over R real numbers are considered as entities. The basic
arithmetic operations +,−, ∗, / can be performed at unit cost and there is a test
operation “is xi ≥ 0?” reflecting the underlying ordering of the reals. Decision

problems are subsets L ⊆ R∞ :=
∞⋃

n=1
Rn. The (algebraic) size of a point x ∈ Rn,

denoted |x|, is n. Having fixed these notions it is easy to define real analogues PR

and NPR of the classes P and NP as well as the notion of NPR-completeness.
DNPR (Digital NPR) is the subset of NPR where we are restricted to guesses
encoded over Z2. For more details on the BSS model we refer to [3].

2.1 The Class NPOR and Its Subclasses

In classical complexity the most relevant class of optimization problems is NPO
which consist of combinatorial optimization problems with exponential size
search space. We shall define a real number counterpart NPOR. There is more
than just one immediate way of doing so. Whereas the problem instances for
such a class are encoded over R, problems naturally differ as to where feasible
solutions are located and what quantity is measured by the objective function.
Feasible solutions could be encoded over both R or Z2 depending on the search
space of the problem. Similarly, the measure of a feasible solution could either be
a non-negative real number or a non-negative integer depending on the problem.
It turns out that all four resulting combinations are meaningful.

In the definition below we use Rs to denote the ring over which feasible solu-
tions are encoded. We consider Rs ∈ {R,Z2}. By Rm we denote the image set
of a measure function; here Rm ∈ {R≥0,Z∞

2 } are suitable choices.
We are now ready to define real analogues of NPO:

Definition 1. a) A triple P := (I, {Sol(x)}x∈I ,m) belongs to the class
NPORs,Rm

R,max if it is a maximization problem over R that consists of the following:

i) A set I ⊆ R∞ as instances of the problem;
ii) for every x ∈ I a set Sol(x) ⊆ R∞

s of feasible solutions. For every x ∈ I
and every y ∈ Sol(x) we require |y| ≤ p(|x|) for a fixed polynomial p;

iii) a function m : {(x, y)|x ∈ I, y ∈ Sol(x)} → Rm. The value m(x, y) is called
the measure of the feasible solution y.

In addition, the following has to hold:

iv) For a given x ∈ R∞ it is decidable in polynomial time in |x| in the BSS
model if x ∈ I;

v) for all x ∈ I and for any arbitrary y ∈ R∞
s of size at most p(|x|) it is

decidable in polynomial time in |x| in the BSS model if y ∈ Sol(x);
vi) for all x ∈ I and for all y ∈ Sol(x) the measure function m is computable

in polynomial time in |x| in the BSS model.



Approximation Classes for Real Number Optimization Problems 89

We are looking for the optimal solution measure m∗(x) = sup
y∈Sol(x)

m(x, y).

b) The classes NPORs,Rm

R,min of minimization problems is defined similarly.
c) NPORs,Rm

R
is the union of classes NPORs,Rm

R,max and NPORs,Rm

R,min . Similarly,
NPOR denotes the union of all optimization problems defined above.

Remark 1. a) In case the measure function takes values in R≥0 we just output
a single real number. If the measure values are non-negative integers we output
the number in binary representation.

b) Since a single real number has algebraic size 1 deciding if an arbitrary
real number is integral cannot be done in polynomial time in its algebraic size.
Thus, if some components of an instance are required to be integral or rational
numbers we need to encode these in binary in order to satisfy condition a,iv)
above.

b) NPOR,R≥0

R,max is the only class introduced in this paper for which problems
can have instances with a non-empty set of feasible solutions and m∗(x) unde-
fined. If Rs = Z2 this follows from the finite search space; and if Rm = Z∞

2 it is
a consequence of part a,vi) of the definition.

Example 1. We illustrate the four variants of optimization problems by giving
examples of problems in each class. NPOZ2,Z∞

2
R

contains problems like Binpack-
ing with real weights on the items or maximizing the number of real polynomi-
als in a given system that share a zero in {0, 1}n. The TSP problem with real
weights on the edges and the Knapsack optimization problem with real num-
bers as weights belong to NPOZ2,R≥0

R
. Typical problems in NPO

R,Z∞
2

R
are the

counterpart of the above problem for polynomial systems when solutions in Rn

are searched. Similarly, the problem of finding the maximal solvable subsystem
of a given system of linear inequalities is in this class. Finally, minimizing the
function value of a multivariate real polynomial, minimizing the maximum norm
of a root of such a polynomial, or the linear and quadratic programming prob-
lems with real data are members in NPOR,R≥0

R
. We easily obtain the following

relations between these classes:

NPO
Z2,Z∞

2
R

⊂ NPOZ2,R≥0

R
∩NPOR,Z∞

2
R

⊂ NPOZ2,R≥0

R
∪NPOR,Z∞

2
R

⊂ NPOR,R≥0

R

Definition 2. An optimization problem P in class NPOR is polynomially boun-
ded if there exists a polynomial q such that for all x the value m(x, y) is bounded
by q(|x|) for all feasible solutions y.

2.2 Approximation Classes APXR, PTASR and FPTASR

In order to study approximation properties of these types of optimization prob-
lems we define approximation classes similar to those well known in the classical
setting. The definition, however, needs some care.
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Definition 3. Given an instance x and a feasible solution y ∈ Sol(x) with mea-
sure v, the ratio of this feasible solution is defined as R(x, v) = max( v

m∗(x) ,
m∗(x)

v ). The ratio is undefined if either v = 0, m∗(x) = 0 or m∗(x) is undefined.
This definition applies to both maximization and minimization problems.

Definition 4. An optimization problem P in class NPORs,Rm

R,max is in class
APXRs,Rm

R,max if there exists a real number r > 1 and polynomial time BSS ma-
chines M1, M2 and M3 such that:

i) For any input x ∈ I machine M1 decides if Sol(x) = ∅;
ii) for any input x ∈ I, Sol(x) �= ∅ machine M2 decides if m∗(x) = 0 or m∗(x)

is undefined;
iii) for any input x ∈ I, Sol(x) �= ∅, m∗(x) is defined and m∗(x) �= 0 machine

M3 computes a value v ∈ Rm such that there exists a y ∈ Sol(x) with
m(x, y) ≥ v and R(x, v) ≤ r.

Similarly for optimization problems in class NPORs,Rm

R,min .

Remark 2. Most important we do not require M3 to compute a feasible solution
y. The output of the computation is only a bound for the measure of a feasible
solution which must exist and this bound must be within a constant factor of the
measure of the optimal solution. The reason for this is that though one might
guarantee such a y to exist it is impossible to compute it by a BSS algorithm
(f.e. if y has to satisfy an equation y2 − s = 0 for some

√
s not belonging to the

algebraic closure of the machine constants).

APXR is then defined as the union of all the subclasses. In a similar way we
can define approximation classes log-APXR, poly-APXR and exp-APXR. For
these classes we require the ratio of the feasible solution y to be logarithmic,
polynomial and exponential in |x|, respectively. Note that membership in exp-
APXR requires that we in polynomial time can decide if the set of feasible
solutions is empty.

Finally, the class PTASR of problems allowing a polynomial time approxima-
tion scheme is defined by changing Definition 4 in the obvious way: The ratio r
now is given as part of the input to M1, M2 and M3. For approximation class
FPTASR we additionally require the running time of M1, M2 and M3 to be
polynomial in |x| and 1

r−1 .

Example 2. The following is an example of a problem inAPXR,Z∞
2

R,max. Let k ∈ N be
fixed and > 1. The problem MAX QUADRATIC POLYNOMIAL SYSTEM(k),
for short MAX QPS(k), is defined as follows: Given polynomials p1, . . . , pm with
real coefficients in n variables, each of degree at most 2, each depending on at
most 3 of the variables x1, . . . , xn and each variable occurs in at most k of the
polynomials, find the maximal number of polynomials pi, 1 ≤ i ≤ m, that have
a common root in Rn. For k > 2 MAX QPS(k) is an NPR-hard maximization
problem due to [4]. It is not hard to see that MAX QPS(k) is in class APXR,Z∞

2
R,max.

First decide for each pi whether it has a root; this is polynomial time decidable
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since only three variables occur in each single pi. Then, for the solvable ones
fixing the occurring variables will at most influence 3(k − 1) other polynomials.
Thus an approximation ratio r := 3(k − 1) + 1 can be guaranteed. �


2.3 Approximation Preserving Reductions

In order to show the existence of complete problems for the above classes of
optimization problems we define approximation preserving reductions.

Definition 5. Let P1 and P2 be maximization problems in class NPOR. P1 is
AP-reducible to P2, denoted P1 ≤AP P2, if functions f and g and a real constant
α ≥ 1 exists such that:

i) For any x ∈ I1 and any real number r > 1 it is f(x, r) ∈ I2;
ii) for any x ∈ I1 and any real number r > 1 if Sol1(x) �= ∅, then Sol2(f(x, r))
�= ∅;

iii) f(x, r) is polynomial time computable in |x|;
iv) for any x ∈ I1 and any fixed real number r > 1 if there exists a y ∈

Sol2(f(x, r)) with measure at least v such that R2(f(x, r), v) ≤ r, then there
exists a z ∈ Sol1(x) with measure at least w such that R1(x,w) ≤ 1+α·(r−1),
and w = g(x, r, v);

v) g(x, r, v) is polynomial time computable in |x|.

A similar definition can be made for minimization problems.

Remark 3. a) In the classical setting we also require a function which computes
a feasible solution to the instance of P1 given a feasible solution to the instance
of P2 we reduced it to. As mentioned previously we do not require the actual
solution to be computed; the fact that it exists is sufficient.

b) Most AP-reductions in this paper will use α = 1, do not depend on r, and
satisfy g(x, r, v) = v. We will explicitly state when this is not the case.

Definition 6. Given a class C of optimization problems, P is C-hard with re-
spect to AP-reducibility if for all P ′ ∈ C, P ′ ≤AP P. If furthermore P ∈ C, then
P is C-complete with respect to AP-reducibility.

2.4 Relation of NPOR to Decision Problems

Let us shortly justify our definition of NPOR and its subclasses from another
point of view, namely the relation of each class to a corresponding class of
decision problems.

In the classical setting PO is the subset of NPO for which an optimal solution
and its measure can be computed in polynomial time. It is PO = NPO iff
P = NP . Just as we have defined four subclasses of NPOR we can define four
subclasses of POR.

In order for an optimization problem in NPORs,Rm

R
to be in the subclass

PORs,Rm

R
we require that we in polynomial time can decide for any given instance
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if the set of feasible solutions is empty. Then for each of the four classes PORs,Rm

R

introduced we add the following additional requirements necessary for a problem
in order to belong to the class:

For POZ2,Z∞
2

R
and POZ2,R≥0

R
an optimal solution and for POR,Z∞

2
R

the optimal

measure value have to be computable in polynomial time. Finally, for POR,R≥0

R

the following questions have to be decidable in polynomial time: given x, ism∗(x)
is defined; given v ∈ R≥0 is there a solution with measure v; given v1 < v2 ∈ R≥0,
is there is a solution with measure in ]v1, v2[.

Theorem 1. The following relations hold between the classes of optimization
problems and the corresponding classes of decision problems:

a) PR = NPR ⇐⇒ POR,R≥0

R
= NPOR,R≥0

R
⇐⇒ PO

R,Z∞
2

R
= NPO

R,Z∞
2

R

b) PR = DNPR ⇐⇒ POZ2,R≥0

R
= NPOZ2,R≥0

R
⇐⇒ PO

Z2,Z∞
2

R
= NPO

Z2,Z∞
2

R

3 Completeness Results for Maximization

We turn to the main results of this paper. In this section we show the existence of
complete problems for each of the classes of maximization problems NPOZ2,Z∞

2
R,max,

NPOZ2,R≥0

R,max , NPOR,Z∞
2

R,max and NPOR,R≥0

R,max as well as the corresponding subclasses
of APXR. Minimization will be treated in the next section.

3.1 NPOR-Completeness

For each of the four classes completeness of a particular problem will be shown.
Let us start with

Example 3. The MAX WEIGHTED 4FEAS problem is defined as:
Input: n ∈ N, a degree 4 polynomial with real coefficients in n variables. Each
variable has a non-negative integer weight;
Feasible Solution: x ∈ Rn such that the polynomial evaluates to zero;
Measure: Sum of weights of all variables which have been assigned a value
different from zero.

The problem is easily shown to belong to class NPOR,Z∞
2

R,max. Note that deciding
existence of a feasible solution is NPR-complete so this problem does not belong
to class exp-APXR if PR �= NPR.

Theorem 2. MAX WEIGHTED 4FEAS is complete for NPOR,Z∞
2

R,max under AP-
reducibility.

Proof. Let P := (I, {Sol(x)}x∈I ,m) be a problem in classNPOR,Z∞
2

R,max. We design
an AP-reduction from P to MAX WEIGHTED 4FEAS.

Let x ∈ I be fixed. Consider the following decision problem: On input (y, v)
decide if y ∈ Sol(x), if v is the binary encoding of an integer, and if m(x, y) = v.
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Since P ∈ NPO
R,Z∞

2
R,max we can easily construct a BSS machine Mx which in

polynomial time in |x| decides this problem. On the other hand, deciding if an
input (y, v) exists such that Mx accepts is a decision problem in class NPR.

An AP-reduction (f, g) is obtained as follows: On input x ∈ I f constructs
Mx. It then uses the reduction described in [4] to generate a degree 4 polynomial
p which has a real root iff there exists (y, v) which fulfills the above conditions. In
p we identify the polynomially many variables which correspond to those registers
that store the binary representation of v at the beginning of the computation
performed by Mx on input (y, v). Each of these variables is assigned a weight 2i

corresponding to which part of the binary representation of v it represents. All
other variables in p are assigned the weight 0. Adding weights to the variables in
p produces a MAX WEIGHTED 4FEAS instance q = f(x). By choosing α = 1
and g(x, r, v) = v we obtain an AP-reduction since:

- If Sol(x) �= ∅, then there exists a (y, v) such that Mx on input (y, v) will
accept. This implies q will have a real root so Sol(q) �= ∅. Moreover, f is
polynomial time computable.

- For any feasible solution z′ to q we can identify the variables which corre-
spond to the registers at the beginning of the computation performed by Mx

on input (y, v). This y is in Sol(x) and has measure v. The assignment of
weights to the variables in q implies that m(x, y) equals the measure of the
feasible solution z′ of q. This especially holds for optimal feasible solutions,
so we have m∗(x) = m∗(q). If there exists a feasible solution s′ for q with
measure w such that R(q, w) ≤ r, then there exists a y ∈ Sol(x) with mea-
sure w such that R(x,w) ≤ r. �


Example 4. The MAX VARIABLE SUM problem is defined as:
Input: n ∈ N, a degree 4 polynomial with real coefficients in n variables;
Feasible Solution: x ∈ Rn such that the polynomial evaluates to 0;
Measure: Sum

∑n
i=1 xi of all components of x.

Theorem 3. MAX VARIABLE SUM is complete for NPOR,R≥0

R,max under AP-
reducibility.

Proof. Let P := (I, {Sol(x)}x∈I ,m) be a problem in class NPOR,R≥0

R,max. We will
show P ≤AP MAX VARIABLE SUM. Let x ∈ I be a fixed instance for P . We
once more consider machine Mx which on input (y, v) decides if y ∈ Sol(x) and
if m(x, y) = v. Again the corresponding decision problem is in NPR. It can be
reduced in polynomial time to a 4FEAS instance, i.e. the question whether a
polynomial p of degree 4 has a real zero. Moreover one particular component of
each root z∗, say z∗1 , represents the value v of the guess (y, v) accepted by Mx.
Let n̂ be the number of variables that p depends on. We introduce n̂ − 1 new
variables denoted by u2, . . . , un̂. Construct a MAX VARIABLE SUM instance
as follows:

q(z, u) = p(z) + (z2 + u2)2 + (z3 + u3)2 + . . .+ (zn̂ + un̂)2
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Clearly q(z, u) has a real root iff p(z) does. In order for q(z, u) to evaluate to 0
we need zi = −ui for 2 ≤ i ≤ n̂. Thus, for all feasible solutions to this MAX
VARIABLE SUM instance the measure is equal to the value assigned to z1. �

For the two remaining classes the following problems are complete:

Example 5. The MAX SUBCIRCUIT VALUE problem is defined as:
Input: n ∈ N, an algebraic circuit (see [3]) with n input gates and two output
gates; the latter are addressed as first and second output;
Feasible Solution: x ∈ {0, 1}n such that the first output gate evaluates to 1;
Measure: Output from the second output gate.

Note that deciding whether the set of feasible solutions is empty is complete for
the complexity class DNPR [6]. The search space is finite, but of exponential
size.

Example 6. The MAX WEIGHTED BINARY CIRCUIT is defined as:
Input: n ∈ N, an algebraic circuit with n input gates, a non-negative integer
weight for each of the input gates;
Feasible Solution: x ∈ {0, 1}n such that the circuit evaluates to 1;
Measure: Sum of weights of all input gates which have been assigned value 1.

Theorem 4. MAX SUBCIRCUIT VALUE is complete for NPOZ2,R≥0

R,max and

MAX WEIGHTED BINARY CIRCUIT is complete in NPO
Z2,Z∞

2
R,max under AP-

reductions.

Proof. Let P := (I, {Sol(x)}x∈I ,m) be a problem in NPOZ2,R≥0

R,max . We will show
P ≤AP MAX SUBCIRCUIT VALUE. Let x ∈ I be a fixed instance for P .
Once again we obtain a decision problem: On input y ∈ {0, 1}∞ decide if y ∈
Sol(x). This decision problem is in DNPR. So it reduces to the Binary Circuit
Satisfiability problem in polynomial time. The output gate of this circuit is the
first output gate in the instance we produce. Now add another circuit which
as input gates has copies of the input gates in the above circuit. This circuit
computes the function m(x, y), where x is fixed and y comes from the input
gates. The output gate of this circuit is the second output gate in the instance
we produce.

For MAX WEIGHTED BINARY CIRCUIT apply ideas from Theorem 2 and
Theorem 4. �

Many important problems are polynomially bounded, i.e. the numerical size of
all solutions is polynomially bounded in the input size. For the related class
NPO

R,Z∞
2

R,max the following problem turns out to be important:

Example 7. The MAX ZERO VARIABLES problem is defined as:
Input: n ∈ N, a degree 4 polynomial with real coefficients in n variables;
Feasible Solution: x ∈ Rn such that the polynomial evaluates to 0;
Measure: Number of variables that are assigned the value 0.
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The problem is in NPO
R,Z∞

2
R,max; since the optimal solution has measure at most

n the problem is polynomially bounded. Note that the corresponding prob-
lem for linear inequalities is related to finding non-degenerated bases in Linear
Programming.

Theorem 5. MAX ZERO VARIABLES is complete for the set of polynomially
bounded problems in class NPOR,Z∞

2
R,max with respect to AP-reducibility.

Proof. Let P := (I, {Sol(x)}x∈I,m) be a polynomially bounded problem in
class NPOR,Z∞

2
R,max. Let x ∈ I be a fixed instance for this problem. Construct a

BSS machine Mx which on input (y, v) ∈ R∞ × Z∞
2 decides if y ∈ Sol(x) and

if m(x, y) = v. As before, this decision problem reduces to the 4FEAS decision
problem. The proof involves two steps: The first is to modify the reduction
in [4] such that the degree 4 polynomial we produce does not have real roots
involving 0-components. The second step is to construct an optimization problem
by introducing new variables which are allowed to take the value 0 and are related
to the value v given to Mx as part of its input.

We assume the reader is familiar with the reduction in [4]. As part of that
reduction there occur variables Xt,r representing the entry of a register r at
step t of the computation of Mx. In the original reduction a variable Xt,r can
attain the value 0. We change the reduction in such a way that no solution of
the resulting polynomial system has a 0-component. Towards this aim introduce
additional variables St,r which encode the value 0 in the following way: If in the
computation performed by Mx on input (y, v) register r at time-step t holds a
value z �= 0, then we will enforce St,r = 1 and Xt,r = z. If register r at time-step
t holds the value 0, then we will enforce St,r = −1 and Xt,r = −1.

Using a semi-algebraic description we both can simulate the computation of
Mx and enforce avoidance of the value 0 in intermediate computations. The
parts of the constructed formula that simulate algebraic operations are a bit
more involved than in the usual proof. We have 8 different combinations of
whether the 3 registers involved in the algebraic operation hold values different
from or equal to 0. Nevertheless the total size of the produced formula is still
polynomial in |x|. Each strict inequality can as usual be replaced by an equality
by introducing one additional variable V . Some of these variables will end up
in equalities which might not be fulfilled in an accepting computation of Mx.
In such a case these variables can be assigned any value, including 0. This is
resolved by introducing one more variable W , for each strict inequality and in
addition requiring the equality V ·W = 1 to be satisfied.

For the second step of the proof we introduce new variables in order to obtain
the desired optimization problem: Assume v as part of the input to Mx to be
encoded in unary notation. For each register position i involved in this unary
encoding we introduce a variable Mi and require S1,i +Mi = 1. Note that S1,i

represents the entry of register i at the start t = 1 of the computation; this
entry according to our setting is given the corresponding component of (the
unary notation of) v. Thus, for any real root of the constructed formula the
number of variables among the Mi’s that are assigned the value 0 equals the
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value v of the guess (y, v) accepted by Mx. Moreover, since no other variables
have been assigned the value 0 in a real root of the formula, this implies the
total number of variables assigned the value 0 equals the value v. �


3.2 Completeness in APXR and PTASR

In this section we outline how both APXR-complete and PTASR-complete prob-
lems will be constructed. This is done by exploiting a certain property of the
previously introduced problems. This property leads in a canonical way to com-
plete problems for both classes (where for the latter the reducibility notion has
to be strengthened appropriately).

Definition 7. We call P measure preserving with respect to NPORs,Rm

R,max under
AP-reductions iff the following conditions are satisfied. First, P is NPORs,Rm

R,max -
complete under AP-reductions. Second, for every problem Q ∈ NPORs,Rm

R,max there
is a reduction algorithm which preserves the measure. The latter means that for
every instance x1 of Q, if x is the P instance obtained when we apply the AP-
reduction from Q to P on input x1, then x1 has a feasible solution with measure
t iff x has a feasible solution with measure t.

We show APXRs,Rm

R,max -completeness by using bounds on the measure for instances
of a measure preserving problem. Since the proof is very similar to what is done
in [5] for the classical setting we only include parts of it.

Definition 8. Let P be in class NPORs,Rm

R,max . We define a maximization problem
P ′ as follows:
Input: A triple X := (x, k, b) with x an instance of P, k ≥ 2 integral, b > 0 a
real;
Feasible Solution: y ∈ R∞ of size at most p(|x|) for a polynomial p, p only
depends on P;
Measure: Let A(X) = (k − 2) · b. The measure is mP′(X, y) = A(X) + b if
either y �∈ Sol(x) or y ∈ Sol(x) and mP(x, y) < b; and it is mP′(X, y) =
A(X) +min(k · b,mP(x, y)) if y ∈ Sol(x) and mP(x, y) ≥ b.

The following two lemmas are crucial.

Lemma 1. For all P in NPORs,Rm

R,max we have P ′ ∈ APXRs,Rm

R,max .

Lemma 2. If P is measure preserving w.r.t. NPORs,Rm

R,max and AP-reductions P ′

is APXRs,Rm

R,max -hard with respect to AP-reductions.

Proof. (of Lemma 2) Let Q be a problem in class APXR,R≥0

R,max. Then there exists
a real constant k > 1 such that for all instances of Q we can in polynomial time
can compute a k-approximation. W.l.o.g. we assume k ∈ N. Since k is fixed once
Q is fixed we can have α and g in our AP-reduction from Q to P ′ depend on k.
The AP-reduction works as follows:



Approximation Classes for Real Number Optimization Problems 97

Let x1 be an instance of Q. Compute a real number b such that there exists
a feasible solution for x1 with measure at least b and RQ(x1, b) ≤ k. By using
x1 as input to the AP-reduction from Q to P we obtain a P instance x with
the property that x1 has a feasible solution with measure t iff x has a feasible
solution with measure t. We construct a P ′ instance X := (x, k, b).

Consider the following two cases:
k = 2: We define α = 1 and g(w, r, v) = v. We see that m∗

P′(X) = m∗
P(x).

This is not true for P ′ instances in general but it is true in this case since
b ≤ m∗

P(x) ≤ k · b (these inequalities are true because of the measure preserving
property of P and because x was constructed from a Q instance x1 for which we
had a k-approximation).

Assume y is a feasible solution to X with RP′(X,mP′(X, y)) ≤ r: If y is not
a feasible solution to x, or y is a feasible solution to x with mP(x, y) < b, then
mP′(X, y) = b. But there exists a feasible solution u to x with mP(x, u) ≥ b and
this feasible solution u will have RP(x,mP (x, u)) ≤ r. If y is a feasible solution
to x with mP(x, y) ≥ b then we also have the RP(x,mP (x, y)) ≤ r.

The measure preserving property of P then implies there exists a feasible
solution to x1 with measure at least mP′(X, y) and RQ(x1,mP′(X, y)) ≤ r.
k > 2: We define α = (k − 1) and g(w, r, v) = v −A(X). We have m∗

P′(X) =
A(X) +m∗

P(x) by the same argument as before. Assume there exists a feasible
solution y to the P ′ instance X such that RP′(X,mP′(X, y)) ≤ r: If y is not a
feasible solution to x, or y is a feasible solution to x with mP(x, y) < b, then
mP′(X, y) = A(X)+ b. Since there exists a feasible solution u to x with measure
at least b we obtain

m∗
P′(X)

mP′(X, y)
≤ r⇔ m∗

P(x)
b

≤ (r − 1) · α+ 1

If y is a feasible solution to x with mP(x, y) ≥ b it follows similarly:

m∗
P′(X)

mP′(X, y)
≤ r ⇒ m∗

P(x)
mP(x, y)

≤ (r−1)·(k−2)+r = (r−1)·α+1 �


Theorem 6. All the four subclasses of APXR,max has complete problems under
AP-reductions.

Proof. According to the the previous two lemmas it is sufficient to establish the
existence of measure preserving problems in each of the four related subclasses
of NPOR,max. The completeness proofs for the classes in NPOR,max in the
previous section show that all the problems considered together with the given
reductions are measure preserving. �

PTASR-completeness can be shown similarly. First, the notion of F-reducti-
ons needs to be transferred to the real number setting in order to establish a
reduction that preserves membership in FPTASR. The reductions in Section
3.1 are all F-reductions as well. Then a canonical problem similar to the one of
Definition 8 is used to prove.

Theorem 7. The above subclasses of PTASR do have complete problems under
F-reductions.
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4 Completeness Results for Minimization

So far we have been dealing with maximization problems. Nevertheless, the result
from the previous section can easily be used to show

Theorem 8. All four subclasses of NPOR,min have complete problems under
AP-reductions.

Proof. For the problems studied in Examples 3, 4, 5, 6 and 7, respectively, the
corresponding minimization versions are complete for their respective minimiza-
tion classes. The above proofs can be adapted almost word by word. �

In this section we focus on completeness results for some further natural mini-
mization problems. The results so far have all been for problems for which already
a potential membership in class exp-APXR implies PR = NPR. The next result
deals with a problem for which feasible solutions easily are found. Consider the
minimization problem MIN DIFFERENT FUNCTION VALUES: Let n, m ∈ N,
m degree polynomials of degree 4 with real coefficients in n variables be given.
We ask for the minimal number of different function values obtained when eval-
uating the m polynomials in a point x ∈ Rn. The related maximization problem
is easily shown to be in class POR,Z∞

2
R,max.

Theorem 9. MIN DIFFERENT FUNCTION VALUES is complete for the
class of polynomially bounded problems in poly-APXR,Z∞

2
R,min with respect to AP-

reducibility.

Proof. Let P := (I, {Sol(x)}x∈I ,m) be polynomially bounded in class poly-
APX

R,Z∞
2

R,min. Let x ∈ I be a fixed instance for this problem and let p be a bound
for the measure of all feasible solutions. For each 1 ≤ i ≤ p we consider a
polynomial time BSS machine Mx,i which on input y decides if y ∈ Sol(x) and
m(x, y) ≤ i. For each Mx,i, 1 ≤ i ≤ p, we apply the reduction in [4] to obtain a
4FEAS instance which depends on variables y and additional variables Zi. We
obtain p polynomials f1, . . . , fp with the following properties:

∃Z1 such that f1(y, Z1) = 0⇐⇒ y ∈ Sol(x) and m(x, y) ≤ 1
...

∃Zp such that fp(y, Zp) = 0 ⇐⇒ y ∈ Sol(x) and m(x, y) ≤ p

By the construction of these p polynomials we know their function values always
are non-negative. The next step is to obtain the desired instance of MIN DIF-
FERENT FUNCTION VALUES. The output x′ of our AP-reduction is given as
p further polynomials g1, . . . , gp obtained as follows:

gp(y, Zp) = fp(y, Zp) , gp−1(y, Zp−1, Zp) = fp−1(y, Zp−1) + fp(y, Zp)
...

g1(y, Z1, . . . , Zp) = f1(y, Z1) + . . .+ fp(y, Zp)
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For all assignments of values to the variables of this set of polynomials the
following inequalities will hold: gp ≤ gp−1 ≤ . . . ≤ g1. If the optimal solution to
the instance x we reduced from has measure j, then we have for all assignments
of values to the variables the following strict inequalities: gj < gj−1 < . . . < g1.
This implies that the optimal solution for x′ has measure greater than or equal to
the measure of the optimal solution for x, since there will be at least j different
function values in x′. On the other hand, we can also find assignments to the
variables of gp, . . . , gj such that all gi’s attain the same function value 0. So x
and x′ have the same optimal measure and the requirements for an AP-reduction
are satisfied. �


Our final result deals with minimizing the norm of a root of a given polyno-
mial. This and related questions are important in studying algorithms in semi-
algebraic geometry. There, in many situations a first important task is to find
good upper bounds on the norm of representatives in each connected component
of a semi-algebraic set. For more on this see [10].

Example 8. The MIN L1-NORM problem is defined as:
Input: n ∈ N, a degree 4 polynomial with real coefficients in n variables;
Feasible Solution: x ∈ (R\{0})n such that the polynomial evaluates to 0;
Measure: The L1-norm

∑n
i=1 |xi| of x.

Theorem 10. MIN L1-NORM is complete for NPOR,R≥0

R,min under AP-reducibi-
lity.

Proof. Let P := (I, {Sol(x)}x∈I ,m) be a problem in class NPOR,R≥0

R,min and let
x ∈ I be a fixed instance of this problem. Construct a BSS machine Mx which
on input (y, v) ∈ R∞ × R decides if y ∈ Sol(x) and m(x, y) = v. As before, this
reduces to a degree 4 polynomial qx such that qx has a real root iff an accepting
guess for Mx exists. Moreover assume zn to be the variable which for any root
of qx gets the measure v of the encoded feasible solution.

A straightforward idea now is to consider homogeneous polynomials. Let
p̃(z0, z1, . . . , zn) be the homogenization of the above qx with deg(p̃) = 4 and
z0 as the homogenization variable. If z∗ ∈ Rn is a root of qx then for all λ �= 0
we have p̃(λ, λ · z∗) = λ4 · p̃(1, z∗) = 0 and thus the infimum of the L1-norm for
roots of p̃ with λ �= 0 is 0. We finally have to increase the infimum to v to obtain
the desired result. Define p(z0, . . . , zn, zn+1) = p̃(z0, . . . , zn) + (zn − z0 · zn+1)2.
Now for any root (z∗0 , . . . , z

∗
n+1) of p with z∗0 �= 0 we have z∗n+1 = z∗

n

z∗
0

and

qx( z∗
1

z∗
0
, . . . ,

z∗
n

z∗
0
) = 0. Thus v = z∗n+1 is always a lower bound for the L1-norm

of solution points obtained by varying z0 above. It follows that the infimum of
z∗n+1 (and thus the infimum of the L1-norm) for all roots of p always equals the
infimum of the optimal solution measure for x. �


Note that above the only variable we require to be different from 0 is the homog-
enization variable z0. It would be interesting to see whether we can free ourselves
from this restriction. The result as well holds for any other (computable) norm.
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5 Conclusions

In the present paper we started the development of a structural analysis of ap-
proximation algorithms for real number optimization problems based on the BSS
model of computation. Our goal was to set up a framework analogue to the study
of combinatorial optimization problems in Turing complexity theory. We did so
by introducing classes of real number optimization problems NPOR, APXR and
PTASR together with a completeness notion for these classes. It turned out that
each of the above classes gives rise to consider four natural subclasses. For each
of those we established the existence of complete problems. Given the many op-
timization problems being of immense interest it might be promising to further
study the present approach in order to get a clearer view of the approxima-
tion properties of NPR-hard problems just as it is done since many years in
combinatorial optimization.
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Abstract. This paper is an investigation of S. Wolfram’s Principle of
Computational Equivalence’ – that (discrete) systems in the natural
world should be thought of as performing computations. We take a logical
approach, and demonstrate that under almost trivial (physically reason-
able) assumptions, discrete evolving physical systems give a class of log-
ical models. Moreover, these models are of intuitionistic, or constructive
logics – that is, exactly those logics with a natural computational inter-
pretation under the Curry-Howard ‘proofs as programs’ isomorphism.

1 Introduction

One of the more notable claims of [11] is that physical systems should naturally
be thought of as computational systems. Although this claim is often backed up
with reference to models of computation based on either cellular automata (as
in [11]) or Turing machines [3], we address this claim from a logical perspective.

We consider a very broad class of physical systems evolving (in discrete steps)
over time, and study them as though they are physical computers. We consider
different descriptions of how they evolve over time, and introduce a partial or-
dering on this set of machine evolutions. Under assumptions about termination,
this gives a familiar class of logical models – Heyting algebras. These are re-
lated to the constructive or computational logic known as intuitionistic logic,
and play the same rôle for intuitionistic logic that Boolean algebras play for
classical propositional logic.

2 Discrete Physical Systems

Our intuition of a discrete physical system is the following: we assume a set of
configurations together with a rule R that describes how configurations change
over time. The only assumptions we require are that configurations change in
discrete steps (so we do not need to worry about Zeno’s paradox [9]), and there
are no ‘hidden variables’ — the current configuration unambiguously determines
successive configurations.
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This situation is easily formalised :

Definition 1. Abstract Computing Machines
An ACM, or Abstract Computing Machine, M = (X,�) is specified by a
set X of configurations where every configuration x ∈ X has at most one next
configuration y, written x � y. This is of course equivalent to the existence
of a partial function Next : X → X. The interpretation is that if an ACM is
in configuration x, the next configuration (assuming this exists) it takes on is
y = Next(x).

This definition, so far, is almost laughably simple. We merely have a (partial)
function acting on a set, defining a binary relation via the usual representation
of partial functions as relations. The interest arises in considering this partial
function to be iterated — the intuition is that it describes a physical system
with a simple rule for discrete evolution over time. The Next function is (for
example) the von Neumann architecture for a computer, the evolution rule for a
cellular automata or Turing machine, the (discrete analogue of a) Hamiltonian
for a physical system, or similar.

Fig. 1. An Abstract Computing Machine

Interpretation. A question of interpretation arises in that we allow for partiality
in the � relation. Strictly, a physical system in a certain configuration will
always have a next configuration under the application of a physically reasonable
rule. We interpret a ‘terminal configuration’ (i.e. where Next(x) is undefined)
in one of two (related) ways:

– Physical partiality The next configuration is simply not accessible to us:
the system evolves over time until it is outside of our domain of reference.
The next configuration is beyond the scope of the observer — out of sight,
perhaps.

– A Halting Scheme Partiality may also arise via the imposition of a halting
scheme. Two possible examples are as follows:
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– Given an ACM (X,�), we may specify a subset (or subspace, or whatever)
of Halting configurationsH ⊆ X , and restrict the next configuration relation
to the complement of H . This gives a new relation �H , specified by

x �H y ⇔ x � y and x /∈ H

– Alternatively, we may restrict the next configuration relation to situations
where the configuration changes — ruling out ‘halting configurations’ where
x � x � x � . . .

Examples. The definition of an Abstract Computing Machine is intentionally
framed in as broad a manner as possible, to cover any discrete evolving physi-
cal system. We observe that those mentioned in discussions on the Principle of
Computational Equivalence [11] — that is, digital computers, cellular automata,
(discrete models of) weather systems, Turing machines, &c. — are covered by
this definition.

We now analyse these systems using tools from theoretical computer science and
logic, and demonstrate that even this simple definition gives rise to an interesting
theory.

Definition 2. The ‘Leads To’ relation
Let M = (X,�) be an ACM. We define the binary relation � on the set X
of configurations to be the transitive closure of the � relation. Hence, � is the
smallest binary relation satisfying :

– x � y implies that x � y
– a � b and b � c implies that a � c

We refer to this as the leads to or subsequentness relation.

Interpretation. The intuition of the ‘leads to’ relation is simple: a configuration
describes the entire state of a computing machine, and x � y simply means that
if the machine is in configuration x it will, under whatever physical or logical
rule R governs its evolution, be in configuration y at some later point.

We observe that the ‘leads to’ relation � contains strictly less information
about the evolution of an ACM than the ‘next’ relation, �.

Proposition 1. Let M1 = (X,�1) and M2 = (X,�2) be two distinct ACMs
with the same configuration set, X = {a, b, c}, and with ‘next’ relations �1 and
�2 specified by

a �1 b �1 c �1 a

and
a �2 c �2 b �2 a

These two inequivalent ACMs give rise to the same subsequentness relation
(the universal relation), where x � x′ for all x, x′ ∈ X.
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Proof. The proof of this is almost immediate, given the definition of � as the
transitive closure of �. Of more interest is the observation that the subsequent-
ness relation loses information about causal ordering — we cannot tell whether
a is followed by b then c, or vice versa. �


Interpretations. Clearly, the subsequentness relation is important, computation-
ally. However, the loss of information about the causal ordering is a non-trivial
problem. There are three possibilities:

1. It is a simple observation that when two ACMs have the same subsequentness
relation � on a configuration set X , they may often be identified up to a
permutation of X . However, we take a category-theorist’s point of view that
isomorphism should not be confused with strict identity, and note that the
quotient induced by such a permutation will often identify all configurations
— leading to trivial systems.

2. As a fairly ‘blunt instrument’ approach, we could introduce a global clock as
an essential part of the structure of the ACM, together with the assumption
that a single step x � y takes exactly one clock cycle. This would involve
replacing the configuration space X with X×N or X×Z, and replacing the
transition x � y with the countable family of transitions (x, n) � (y, n+1).
This will allow for the recovery of the causal ordering, albeit at the expense
of a desperately expanded configuration set.

3. We could restrict the computational paths considered to those that do not
repeat configurations. This prevents the sort of situation described in Propo-
sition 1 from occurring, and allows causal orderings to be deduced from the
subsequentness relation.

In what follows, we broadly follow 3. above, and restrict the computational
paths considered. However, this is better done at the level of functions on the
configuration set, rather than at the level of the configuration set itself. This also
fits in with the category-theoretic approach that structure-preserving maps on a
mathematical object are the correct level of discourse, rather than the elements
of the mathematical object itself.

2.1 Evolutions and Semantics of Abstract Computing Machiness

Our intuition of an Abstract Computing Machine is that of a set X of configu-
rations together with some rule R that describes – in a deterministic manner –
how one configuration evolves into another.

In both physical and computational systems, we are often interested in study-
ing systems at different levels of abstraction. Consider a physical computer, based
on the von Neumann architecture, executing a Java program, using a Java Vir-
tual Machine. We have a very different view of this according to whether we
describe it at the level of machine language, interpreted byte code, high-level
program code, or simply as a ‘black box’ that takes inputs to outputs.

In order to axiomatise this, we study the collection of partial functions on
configuration sets that respect the ‘leads to’ relation, and introduce a partial
ordering that corresponds to ‘different levels of abstraction’:
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Definition 3. Evolutions, Machine Semantics, cycle-freeness
Let M = (X,�) be an abstract computing machine. We define an evolution
of M to be a partial function η : X → X satisfying the following condition:

η(x) = y ⇒ x � y (1)

Of course, machine evolutions are far from unique — note that this definition
even allows for the nowhere-defined partial function 0X : X → X as an evolution
of M. For an ACM M, we define the Machine Semantics of M to be the set
of all evolutions, which we denote [M].

When an evolution η of M satisfies the condition ηK(x) �= x for all x ∈ X
and K ∈ N+, we say that η is a cycle-free evolution. We denote the set of
cycle-free evolutions by [[M]], and refer to this as the cycle-free semantics for
M. Note that nilpotent evolutions (i.e. evolutions η ∈ [M] where there exists
some non-zero integer N such that ηN = 0X) are always cycle-free; for finite
configuration sets, the converse also holds. When the Next partial function is
cycle-free it is clear that all machine evolutions are cycle-free. In this case, we
say that M is a cycle-free ACM.

Interpretation. Informally, an evolution is a partial function where, given a
machine M in the configuration x, the machine will at some later point be
in configuration η(x) (provided η(x) is defined). The term ‘machine semantics’
comes from the position that the meaning, or structure, of an ACM is best
studied in terms of its set of evolutions.

We introduce a natural way of comparing cycle-free machine evolutions that
has both a nice physical or computational interpretation, and well-behaved
mathematical properties. The restriction to cycle-free evolutions is important,
both in order to preserve the causal structure (as in Proposition 1), and in order
to allow for the usual mathematical tools to be applied to the theory of machine
semantics. Intuitively, we are restricting ourselves to considering computations
that cannot ‘get stuck in an infinite loop’.

Definition 4. The primitiveness relation
Let M = (X,�) be an abstract computing machine, and let η, μ be cycle-free
evolutions of M, so η, μ ∈ [[M]]. We say that η is more primitive than μ,
written μ ≤ η exactly when, for all μ(c) = d, there exists some integer k ∈ N =
{1, 2, . . .} such that μ(c) = d = ηk(c). (We emphasise that in this definition, k
is not a fixed integer; it may vary as a function of both c, d and η, μ).

Interpretation. The motivation for the primitiveness relation is, as stated
above, that we wish to ”study ACMs at different levels of generality”. The prim-
itiveness relation captures the informal idea that the description of a computer
at the level of machine code is ‘more primitive’ than a description in terms
of a compiled or interpreted language such as Java, which in turn is more
fundamental than a description as a ‘black box’ that merely takes input to
outputs.
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Fig. 2. The primitiveness partial order

3 The Mathematical Setting for the Primitiveness
Relation

We demonstrate below (Theorem 1) that the correct mathematical setting for
the primitiveness relation is in the theory of partial orders and (for cycle-free
machines) lattices. The basics of this theory, as in [12] are as follows:

Definition 5. Partial orders, Lattices, &c.
A partial order on a set P is a relation ≤ satisfying

1. Reflexivity a ≤ a for all a ∈ P
2. Antisymmetry a ≤ b and b ≤ a imples a = b, for all a, b ∈ P
3. Transitivity a ≤ b and b ≤ c implies a ≤ c, for all a, b, c ∈ P

A binary relation that is only required to satisfy 1. and 3. is called a pre-order,
instead of a partial order. Every set with a pre-order determines a partially or-
dered set by taking the minimal (order-preserving) equivalence classes determined
by the congruence x ∼ y iff x ≤ y and y ≤ x.

Given a pair of elements of a partially ordered set, a, b ∈ P , an upper bound
of a and b is an element z satisfying a ≤ z and b ≤ z. The least upper bound
or join (when it exists) of a and b, denoted a ∨ b, is the unique upper bound
satisfying a∨ b ≤ z, for all upper bounds z of a and b. Lower bounds, and the
greatest lower bound or meet (denoted a ∧ b), are defined dually.

A top element for a partially ordered set P is a unique element � ∈ P
satisfying, p ≤ �, for all p ∈ P . Similarly, a bottom element ⊥ ∈ P is a unique
element satisfying ⊥ ≤ p for all p ∈ P .
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A lattice is defined to be a partially ordered set where all pairs of elements
(and hence by induction, all finite sets of elements) have both least upper bounds
and greatest lower bounds. A lattice is called upper-complete when all sets
of elements (i.e. not just finite sets) have a least upper bound. Similarly it is
lower-complete when when all sets of elements have a greatest lower bound.

By definition, all finite lattices are both upper-complete and lower-complete.
Also, every upper-complete lattice has a top element given by � =

∧
L and every

lower-complete lattice has a bottom element given by ⊥ =
∨
L.

The term ‘lattice’ comes from the graphical representation for finite lattices
as a Hasse Diagram, such as the following simple example:
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Theorem 1. Let M = (X,�) be an ACM, with machine semantics [M], and
cycle-free semantics [[M]] ⊆ [M]. Then ([[M]],≤) is a partial order, with 0X ∈
[[M]] as bottom element.

Proof.
To show that ([[M]],≤) is a partial order, we need to demonstrate reflexivity,
anti-symmetry and associativity:

– Reflexivity This is immediate from the definition : for all η(c) = d, trivially,
we have that ηK(c) = d, where K = 1, and so η ≤ η.

– Anti-symmetry Given η ≤ μ and μ ≤ η, then for all η(c) = d, there ex-
ists K > 0 such that μK(c) = d. Therefore, dom(η) ⊆ dom(μ). Similarly,
dom(μ) ⊆ dom(η) and so dom(μ) = dom(η).
We now we prove by contradiction that η = μ. Given d = η(c) = μK(c),
assume that K �= 1. We then define

μ(c) = e1 , μ
2(c) = e2 , . . . , η

k(c) = ek = d

As μ ≤ η, there exists L1, . . . , �LK > 0 such that

e1 = ηL1(c) , e2 = ηL2(e1) , . . . , eK = d = ηLK (ek−1)
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This gives

η(c) = ηLk+LK−1+...+L1(c) where
K∑

j=1

Lj > 1

a contradiction of the cycle-freeness of η. ThereforeK = 1, and so η(c) = μ(c)
for all c ∈ dom(η) = dom(μ).

– Transitivity Given η ≤ μ and μ ≤ ζ, then, for all η(c) = d, there exists
K ∈ N+ such that η(c) = d = μK(c). Similarly, for all μ(c) = e, there exists
L ∈ N+ such that ζL(c) = e. Therefore, for all η(c) = d, we deduce that
there exists some finite series of positive integers {L1, L2, . . . LK} such that
ζL1+L2+...+LK (c) = d. Therefore η ≤ ζ, and our result follows.

It is also trivial from the definition that the nowhere-defined partial function
0X satisfies 0X ≤ η for all η ∈ [[M]], and so is a bottom element for this partial
ordering. �


4 The Order Theory of Cycle-Free Abstract Machines

As an indication that we may find interesting computational structures within
the theory of evolutions and the primitiveness relation, we now analyse the
cycle-free case in logical, or computational, terms. This is clearly the ‘simplest
possible’ case — we briefly discuss the general case in Section 5. The intention
in presenting this case is to show that we may derive non-trivial theories even
from the simplest case of ACMs.

Interpretations. We are now restricting ourselves to the theory of cycle-free
ACMs. The definition of a cycle-free ACM is that the Next : X → X partial
function is cycle-free (and hence, trivially, all machine evolutions are cycle-free).
In the finite case, this is exactly equivalent to the condition that Next : X →
X is nilpotent. The intuition of this is not that we are considering computer
programs without loops or control structure — rather, (in the finite case) we are
considering programs with guaranteed termination, or halting. Although this is
often difficult or impossible to prove, we refer to [5] for an decidedly non-trivial
example of a computational system based on provably nilpotent maps.

Theorem 2. Let M = (X,�) be a cycle-free ACM – i.e. Next(x) �= x, for all
x ∈ X, and all evolutions are cycle-free, so [M] = [[M]]. Then
(i) The partial order ([M],≤) has a top element.
(ii) ([M],≤) is closed under finite meets.
(iii) ([M],≤) is closed under arbitrary joins.

Proof.
(i) The top element is quite simply the Next : X → X partial function. By
definition of machine evolutions, η(c) = d implies that NextN (c) = d for some
N > 0. Also, as M is cycle-free, there does not exist any machine evolution
ζ ∈ [M] such that ζK(c) = Next(c) for K > 1, so Next is the top element
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of this partial order. For the remainder of this proof, we use lattice-theoretic
notation, and write �(c) for Next(c).
(ii) Having established the existence of a top element, we explicitly exhibit the
join of a set of elements {ηi}i∈I , again in terms of the top element. Given a
configuration x ∈ X , then:

–
(∨

i∈I ηi

)
(x) is undefined exactly when ηi(x) is undefined for all i ∈ I.

– Consider the subset {ηj}j∈J⊆I of evolutions where ηj(x) is defined. For all
ηj , there exists some minimal nj such that ηj(x) = �nj (x). We then define
an integer n in terms of the greatest common divisor, n = gcd({nj}j∈J ) and
take

(∨
i∈I ηi

)
(x) = �n(x).

It is then immediate by the definition of the primitiveness ordering and the top
element that this is the least upper bound of {ηi}i∈I .
(iii) We explicitly exhibit the meet of two elements η, μ, again in terms of the
top element:

– Given x ∈ X , then (η ∧ μ)(x) is undefined when either η(x) is undefined or
μ(x) is undefined, or both.

– Assuming that both η(x) and μ(x) exist, then by (i) above, there exist least
integers p, q such that �p(x) = η(x), and �q = μ(x) (note that p and q
are not fixed, but vary with x). The meet of η and μ is defined in terms
of the least common multiple of p, and q, by (η ∧ μ)(x) = �r(x) where
r = lcm(p, q).

It is again immediate, by the definition of the primitiveness ordering, that this
is the greatest lower bound of η and μ. �


4.1 Cycle-Free Abstract Machines Describe Constructive Logics

We now observe that there is a close connection between partially ordered sets
(with additional ‘closure’ properties), and both theoretical computer science and
logic. We refer to [1,6] for good expositions, and restrict the following exposition
to one example that is relevant to the theory of abstract computing machines
— that of Heyting algebras.

Heyting algebras play the same rôle for intuitionistic logic that Boolean alge-
bras play for classical logic. Unfortunately, there is no space here to present an
overview of intuitionistic logic, so we refer to [4] for a good introduction. Very
broadly, intuitionistic logic is a restriction of classical logic that exactly captures
the constructive fragment of logic (the original intention was that a proof of
the existence of a mathematical object is exactly a construction of that object).
Because of this constructive aspect, it is perhaps most familiar as the logic used
in the PROLOG programming language [7] — it is also the logic required for the
”Proofs - as Programs” correspondence given by the Curry-Howard isomorphism
[10] between (intuitionistic) logics and typed lambda calculii.
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Definition 6. Heyting algebras, (relative) pseudocomplements
A Heyting algebra is a lattice L with (distinct) top and bottom elements, where
for every pair of elements g, f the set {h : f ∧h ≤ g} ⊆ L is bounded above. The
(unique) upper bound of this set is called the relative pseudocomplement of
f with respect to g, and denoted f ⇒ g. Clearly, the relative pseudocomplement
of f with respect to g is used to model (intuitionistic) implication. There is also
a similar concept for (intuitionistic) negation:

The pseudocomplement of f ∈ L, denoted ¬f is defined in terms of the
bottom element of the lattice, as ¬f = f ⇒ ⊥.

The precise connection between intuitionistic logic and Heyting algebras is then
the following:

Definition 7. Logical equivalence, the Lindenbaum-Tarski algebra
Consider a logical theory T , consisting of formulæ, connectives, and rules of
implication. Formulæ p, q are called logically equivalent, when p can be de-
duced from q and q can be deduced from p. We denote this equivalence relation
by p ∼ q.

The Lindenbaum-Tarski algebra of T has as elements equivalence classes
of formulæ under this equivalence relation. The operations of the Lindenbaum-
Tarski algebra are those inherited from the logical theory T (such as conjunction,
disjunction, negation, &c.), provided they are well-defined under this quotient (—
which is a reasonable assumption for logical theories).

Although this is a very general concept, for intuitionistic logics there is a good
characterisation of the corresponding Lindenbaum-Tarski algebras:

Proposition 2. Heyting algebras exactly the Lindenbaum-Tarski algebras of in-
tuitionistic logics.

Proof. This is a standard result of mathematical logic — we refer to [2] for a
good exposition. �

We now demonstrate that machine semantics for Abstract Computing Machines
are Heyting algebras, and hence by Proposition 2, are intuitionistic logics, with
logically equivalent terms identified.

Proposition 3. For an arbitrary cycle-free ACM M, the primitiveness partial
order gives a Heyting Algebra structure to the machine semantics.

Proof. We have seen that the machine semantics for an ACM has (distinct)
top and bottom elements, is closed under finite meets and arbitrary joins. The
existence of the relative pseudocomplement follows almost trivially from the
closure under arbitrary joins, by

f ⇒ g =
∨
{h : f ∧ h ≤ g} (2)

�

Corollary 1. Let M be a cycle-free abstract computing machine. Then the ma-
chine semantics of M is a model of an intuitionistic logic, under the logical
equivalence relation.
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5 Commentary

We have only scratched the surface of the theory of Abstract Computing Ma-
chines, and machine semantics. Notably, all substantial results have been about
the very special case of cycle-free machines. The following comments are more
speculative, but hopefully provide more intuition:

Mathematically: For an ACM M, the lattice of machine evolutions [M] is
closed under composition, and hence is a semigroup. However, in general, the
set of cycle-free evolutions is not closed under composition. Even for cycle-free
machines, the composition is not order-preserving (since a ≤ b does not imply
that ax ≤ bx, so [M] is not – for example– a quantale). The interaction of the
composition and the partial ordering is a non-trivial subject and presumably
related to the domain-theoretic notion of ‘computation by the calculation of
least fixed points’. We also observe that the order-theory of arbitrary ACMs
remains to be studied. Although it is relatively easy to show that we may recover
domain-theoretic notions such as directed-completeness, compactness, &c. (we
refer to [1] for a good exposition of these notions) the full theory has not been
given.

Physically: Although the definition of Abstract Computing Machines was
framed very widely, there were nevertheless certain underlying assumptions. We
may think of the partial functions (i.e. the machine evolutions) as describing
possible observations of an evolving system. This is the underlying assumption
that observing a system is not a physical change to it; similarly, the use of
partiality is an implicit acceptance that either the halting scheme used is physi-
cally reasonable, or our mathematical tools are appropriate to analyse a system
where we do not have access to all possible configurations. These assumptions
(any many others) will need to be considered in more detail if we try to analyse
quantum-mechanical systems in a similar way.

Computationally. It is interesting to observe that the cycle-free machines (i.e.
those that guarantee not to enter closed loops – unconditional termination in
the finite case) are exactly those that provide models of intuitionistic logic (also
very closely related to unconditional termination via Robinson’s unification Al-
gorithm [7] and various decidability results [4]). In the general case, the set
of cycle-free evolutions is not a lattice, because it has no top element (the
Next : X → X partial function is not cycle-free). Preliminary studies suggest
that the correct setting is domain theory, and computational interpretations may
be found in areas such as models of functional programming or untyped lambda
calculus [1,8].

The Principle of Computational Equivalence? No claim has been regarding Ab-
stract Computing Machines and computational universality. However, there are
a number of approaches to computationally universal systems via order the-
ory; undoubtedly the most famous of these is Dana Scott’s semantics for the
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pure untyped lambda calculus [8]. As for interpretations, or whether this paper
supports Wolfram’s principle, the computationally significant structure in our
theory arises from comparing distinct ways of observing (subproperties of) an
evolving physical system. One possible conclusion is that if we are free to look
at (subsections of) a physical system in any way we wish, we can quite easily see
significant computational structures. However, the actual computational struc-
ture arises from our perceptions of evolving systems, rather than being intrinsic
to the systems themselves.
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Abstract. A k-output spiking neural P system (SNP) with output neu-
rons, O1, ..., Ok, generates a tuple (n1, ..., nk) of positive integers if, start-
ing from the initial configuration, there is a sequence of steps such that
during the computation, each Oi generates exactly two spikes a a (the
times the pair a a are generated may be different for different output
neurons) and the time interval between the first a and the second a is
ni. After the output neurons generate their pairs of spikes, the system
eventually halts. We give characterizations of sets definable by partially
blind multicounter machines in terms of k-output SNPs operating in a
sequential mode. Slight variations of the models make them universal.

1 Introduction

Neurons are arguably one of the most interesting cell-types in the human body.
A large number of neurons working in a cooperative manner are able to per-
form tasks that are not yet matched by the tools we can build with our current
technology. Some such tasks are thought, self-awareness, intuition, etc. Coming
closer to computer science, even “simple” tasks that have been studied exten-
sively, such as pattern matching, are performed much faster and more reliably
by our brains using the “technology” of neurons than our computers which are
several orders of magnitude faster in their information processing capabilities.

We believe the distributed manner in which the brain processes information is
important in obtaining better performance, thus we are interested in the emerg-
ing area of Spiking Neural P systems (SNPs) defined as a computational model
in [4], and investigated in a series of papers:[9], [10], [3]. SNPs incorporate ideas
from spiking neurons into membrane computing [8], see, e.g., [1], [5], [6].

We would like to stress that the current work is not intended as a straight sim-
ulation of neurons as many features/details of neurons are omitted/abstracted.
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For example, the different elements of neurons such as soma, dendrite, axon,
axon terminal, Schwann cells etc. are abstracted. We also do not consider the
inhibitory synapses in a direct manner, but rather model them indirectly by
‘forgetting rules’ (defined below). It is also worth mentioning that we consider
the spikes of the neurons to be of the same type, thus the actual changes in
the electric potential of spikes are assumed to encode no information. Finally,
in the basic model, the output of such a system of neurons is considered to be
the time elapsed between the only two spikes of the output neuron (one spe-
cific, pre-set neuron). The reason behind this choice was two-fold: first we want
to have a model that is consistent (all the components have the same types of
rules), thus the output neuron is a “regular” neuron in all respects. Second, this
definition is very close to bio-implementation as one could observe the specific
output neuron, detecting the two spikes, and determining the time elapsed be-
tween the spikes. It is our hope that once technology gives way and we are able
to “manipulate” neurons, the constructions presented in this paper could see a
practical implementation.

We now pass to a more detailed description of the SNP; such a system is
represented as a directed graph consisting of a set of neurons (nodes of a graph)
connected by synapses (directed edges of the graph). The neurons send signals
(spikes) along these synapses by means of firing rules, which are of the form
E/ac → a; t, where E is a regular expression, c is the number of spikes consumed
by the rule that spikes a single a, and t is the delay between firing the rule and
emitting the spike. A rule can only be used if the number of spikes in the neuron
are “covered” by expression E, in the sense that the current number of spikes in
the neuron, n, is such that an is contained in the set L(E) . In the time interval
between firing a rule and emitting the spike, the neuron is closed/blocked – it
does not receive other spikes and cannot fire. After the time interval, the neuron
is again open and can again fire and receive other spikes. There are also rules
for forgetting spikes, of the form as → λ (s spikes are just removed from the
neuron). In this paper, for convenience, we will also refer to the forgetting rules
as firing rules. Starting from a fixed initial distribution of spikes in the neurons
(initial configuration) and using the rules in a synchronized manner (a global
clock is assumed), the system evolves. A computation is a sequence of transitions
starting from the initial configuration. A transition is maximally parallel in the
sense that all neurons that are fireable must fire. However, in any neuron, at
most one rule is allowed to fire. Details can be found in [4].

An SNP can be used as a computing device in various ways. Here, as in
previous papers, we will use them as generators of numbers. We will only consider
SNPs with three types of neurons:

1. A neuron is bounded if every rule in the neuron is of the form ai/aj → a; t ,
where j ≤ i, or of the form ak → λ, provided there is no rule of the form
ak/aj → a; t in the neuron. Note that there can be several such rules in the
neuron. These rules are called bounded rules. (For notational convenience,
we will write ai/ai → a; t simply as ai → a; t.)
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2. A neuron is unbounded if every rule in the neuron is of the form a3(a2)∗/a2 →
a; t , a3(a2)∗/a3 → a; t , or a(a)∗/a→ a; t. (Again, there can be several such
rules in the neuron.) These rules are called unbounded rules.

3. A neuron is general if it can have general rules, i.e., bounded as well as
unbounded rules.

An SNP is bounded if all the neurons in the system are bounded. If, in addition,
there are unbounded neurons then the SNP is said to be unbounded. A general
SNP has general neurons.

It was recently shown in [3] that a set Q(Π) ⊆ N1 is recursively enumerable
if and only if it can be generated by a 1-output unbounded SNP Π all of whose
unbounded neurons have only one rule – either a(a)∗/a→ a; 0 or a(a)∗/a→ a; 2.

We generalize the SNP by allowing it to produce k outputs. A k-output SNPΠ
has k output neurons,O1, ..., Ok. We say thatΠ generates a k-tuple (n1, ..., nk) ∈
Nk if, starting from the initial configuration, there is a sequence of steps such
that each output neuron Oi generates exactly two spikes a a (the times the pair
a a are generated may be different for different output neurons) and the time
interval between the first a and the second a is ni. Moreover, after all the output
neurons have generated their pair of spikes, the system eventually halts, in the
following sense:

Π halts if it reaches a configuration where all neurons are open but no
neurons are fireable. In fact, for the constructions in this paper, this will
correspond to the configuration in which all neurons, except for a specified
subset R of neurons, have zero spikes, and those in R have exactly two spikes.

The set of all k-tuples generated is denoted by Q(Π).
In this paper, we study SNPs operating in sequential mode. Informally, this

means that at every step of the computation, if there is at least one neuron with
at least one rule that is fireable, we only allow one such neuron and one such rule
(both nondeterministically chosen) to be fired. There are two interesting cases:

1. Case 1: At every step, there is at least one neuron with a fireable rule. We
show that:
(a) A k-output sequential unbounded SNP Π can generate a set Q(Π) ⊆

Nk if and only if it can be generated by a partially blind multicounter
machine (PBCM). Since PBCMs are not universal [2], it follows that
these SNPs are not universal.

(b) In contrast to 1(a), sequential general SNPs are universal.
2. Case 2: Not every step has at least one neuron with a fireable rule. (Thus, the

system might be dormant until a rule becomes fireable. However, the clock
will keep on ticking.) In contrast to 1(a), we show that sequential unbounded
SNPs are universal.

2 Sequential Spiking Neural P Systems

We will investigate the computational power of SNPs whose behavior is con-
trolled to operate in a sequential manner (i.e. asynchronously). More precisely,
the SNP is restricted in its operation as follows:
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1. As before, the system starts from a fixed initial configuration and is syn-
chronized, i.e., there is a global clock (so all the neurons use this clock).

2. However, a step consists of nondeterministically choosing a “fireable” rule.
(For convenience, a forgetting rule is classified as a “fireable” rule.) If there
is no fireable rule, then the system is dormant until a rule becomes fireable.
However, the clock will keep on ticking.

3. The convention for halting is like before, i.e., all neurons, except for a spec-
ified subset R of neurons, have zero spikes and those in R have two spikes
(and, of course, all the neurons are open, but none are fireable).

For convenience we will refer to SNPs operating in a sequential mode as sequen-
tial SNPs.

2.1 Strongly Sequential SNPs and Partially Blind Counter
Machines

We will give a characterization of partially blind multicounter machines. But
first we recall the definition of a multicounter machine[7] .

A nondeterministic multicounter machine (CM)M is a nondeterministic finite
automaton with a finite number of counters (it has no input tape). Each counter
can only hold a nonnegative integer. The machine starts in a fixed initial state
with all counters zero. During the computation, each counter can be incremented
by 1, decremented by 1, or tested for zero. A distinguished set of k counters (for
some k ≥ 1) is designated as the output counters. The output counters are non-
decreasing (i.e., cannot be decremented). A k-tuple (n1, ..., nk) ∈ Nk is generated
if M eventually halts in an accepting state, all non-output counters zero, and
the contents of the output counters are n1, ..., nk, respectively. We will refer to
a CM with k output counters (the other counters are auxiliary counters) as a
k-output CM.

A partially blind k-output CM (k-output PBCM) [2] is a k-output CM, where
the counters cannot be tested for zero. (Again the output counters are non-
decreasing.) The counters can be incremented by 1 or decremented by 1, but if
there is an attempt to decrement a zero counter, the computation aborts (i.e.,
the computation becomes invalid). Note that, as usual, the output counters are
nondecreasing. Again, by definition, a successful generation of a k-tuple requires
that the machine enters an accepting state with all non-output counters zero.

It is known that partially blind k-output CMs can be simulated by vector
addition systems, and vice-versa [2]. (Hence, such counter machines are not uni-
versal.) In particular, a partially blind k-output CM can generate the reachability
set of a vector addition system. We can characterize partially blind k-output mul-
ticounter machines (PBCMs) in terms of “strongly sequential unbounded” SNPs.

A strongly sequential unbounded SNP is a sequential unbounded SNP which
is further restricted in its operation in that an accepting computation is valid
only if every step of the computation has at least one fireable rule. Otherwise
(i.e., there is a step in which there is no fireable rule), the computation is
viewed as invalid and no output from such a computation is included in the
generated set.
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Fig. 1. SNP (Left) and Strongly Sequential SNP (Right) Generating {7n + 1 | n ≥ 1}

To illustrate how a strongly sequential SNP operates, in Figure 1 we give
an example of a SNP generating Q = {7n + 1 | n ≥ 1} along with a strongly
sequential SNP generating the same set. The SNP operates by having all three
neurons fire in parallel during the first time step sending a spike to the envi-
ronment beginning the output. Neuron 2 nondeterministically picks to fire one
of its rules. If the first rule is chosen, the system will repeat. If the second rule
is chosen, the system will trigger neuron 3 to fire sending a second spike to the
environment at 7n+1 steps after the first spike (where n is the number of times
the system looped plus 1).

The operation of the strongly sequential SNP is more complicated. A valid
computation for this system fires the neurons in the following sequential manner:
1, 2, ((3, 4)+(4, 3)), (5, 6, 8, 7, 2, ((3, 4)+(4, 3)))∗, 5, 6, 7, 8, 8 , where ((3, 4)+(4, 3))
is interpreted to mean that either 3 is followed by 4 or 4 is followed by 3. Changing
the firing order of other neurons creates an invalid computation by forcing the
system into a non-halting configuration where no neuron is fireable.

We now consider the case when each neuron is either bounded or unbounded.
In fact, as we shall see, we may assume that in an unbounded neuron, the only
rule present is a3(a2)∗/a3 → a; 0.

Lemma 1. If Q(Π) ⊆ Nk is generated by a k-output strongly sequential un-
bounded SNP Π, then it can be generated by a k-output PBCM M. Hence, such
SNPs are not universal.

Proof. Given a k-output strongly sequential unbounded SNP Π , we construct a
k-output PBCM M to simulate Π . M has several counters, which are initially
zero. There are k output counters, G1, ..., Gk. For 1 ≤ i ≤ k, when output neuron
Oi of theΠ has generated the first spike a, output counterGi starts incrementing
at every step of the simulation. When Oi has generated the second spike a, Gi

stops incrementing. When all the output counters have stopped incrementing,
M enters the Ending Phase, which we will describe below.

We describe how the other counters ofM are used to keep track of the numbers
of spikes in the neurons during the computation. A bounded neuron is easy to
simulate and does not need a counter. Since the regular expression in a bounded
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neuron represents a finite set, the simulation of the neuron can be done in the
finite control.

Consider an unbounded neuron. First consider the case when the only rule
in the unbounded neuron is a3(a2)∗/a3 → a; 0. (In fact, as we shall see, in
the converse of this lemma, only this rule is used in every unbounded neuron.)
To simulate this unbounded neuron, M uses a partially blind counter C to
keep track of the number of spikes of this neuron during the computation. Let
m be the initial number of spikes in this neuron. At the start of the simula-
tion, M increments C (which starts at zero) to value m. During the simulation,
the finite-state control of M will keep track of the parity of C. If C is even,
the neuron cannot fire. If C is odd (we don’t know whether it is 1, 3, 5, ...) and
the neuron is “open”, then when we fire the neuron, we decrement C by 3.

1. If C had value 1, the machine aborts.
2. If C had value 2i + 1 (i = 1, 2, ...), then the the new value of C (after

decrementing) is 2(i−1), which is even. The next time it will be odd is when
a spike comes into the neuron, and the counter value will then be 2(i−1)+1.
If i = 2, ..., then the neuron is fireable. If i = 1, then when we try to fire, the
machine will abort.

Thus, M can simulate the rule a3(a2)∗/a3 → a; 0. In general, if the neuron has
other rules of the forms a3(a2)∗/a2 → a; t , a3(a2)∗/a3 → a; t , or a(a)∗/a→ a; t,
a new counter is needed to simulate each such rule. Thus, if there are s different
unbounded rules in the neuron, M needs s counters to simulate the neuron.

Ending Phase: This phase is entered only when the k output counters have k
values generated by the k output neurons of the SNP.M continues the simulation
until at some time, nondeterministically chosen, it guesses that Π has halted.
By definition, this happens when all the neurons, except for a specified subset R
of neurons, have zero spike and those in R have two spikes. M then decrements
by 2 the counters corresponding to the neurons in R and enters an accepting
state. It follows that M generates Q(Π). �


Lemma 2. Let Q(M) ⊆ Nk be generated by a k-output PBCM M. Then we
can construct a k-output strongly sequential unbounded SNP Π

(o1,···,ok)
11 which

generates the set Q(Π(o1,···,ok)
11 ) = {(11x1 − o1, · · · , 11xk − ok) | (x1, · · · , xk) ∈

Q(M), xi ≥ 2 for 1 ≤ i ≤ k} for some set tuple (o1, · · · , ok) where 0 ≤ oi ≤ 10.

Proof. Given a k-output PBCM M, we construct a k-output strongly sequen-
tial unbounded SNP Π

(o1,···,ok)
11 for some tuple (o1, · · · , ok) where 0 ≤ oi ≤ 10.

Π
(o1,···,ok)
11 simulates M by simulating each of M’s instructions with a strongly

sequential unbounded SNP module. The instructions of M are of the forms
li = (ADD(rn), lj , lk), li = (SUB(rn), lj), and li = HALT . We assume that
M’s output counters (counters r1, · · · , rk) are never decreasing. In the simula-
tion, we use a single neuron to represent each counter which stores some count x
as 2x spikes. The initial configuration of the system has the initial configuration
of each module along with a single spike in neuron l0 (representing the initiating
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Fig. 2. Strongly Sequential Unbounded SNP Addition Module

neuron for instruction l0). When the computation halts, a correct computation
will leave the system with all neurons empty except neurons r1, · · · , rk which
each contains two spikes. Due to the sequential nature of the machine, the out-
put module requires 11 steps to decrement each neuron rk′ for 1 ≤ k′ ≤ k and
determine if this is an initial or final decrement. Hence the numbers generated
by Π(o1,···,ok)

11 are eleven times the numbers generated by M (minus some offset
value of ten or less). Also due to the nature of the output module we will describe
later in the proof, the strongly sequential nature of the system only holds if each
tuple xk′ for 1 ≤ k′ ≤ k is ≥ 2.

To simulate each ADD instruction we create the module shown in Figure 2.
The module is initiated by a single spike to neuron li which fires sending a spike
to both neurons li1 and li2 (during time t + 1 where time t is the time the
initiating spike is sent to neuron li). Since the system is sequential, one of these
two neurons fires during the next step (time t + 2) and the other neuron fires
in the following step (time t + 3) with both sending a spike to neurons li3 and
li4. (Since both rules have a delay of a single step, neurons li3 and li4 are not
fireable until both neurons li1 and li2 fire.) At time t+ 4, neuron li4 spikes with
a delay of 1. (Since the neuron is closed at time t + 4, the second spike sent to
neuron li4 is lost.) Neuron li3 spikes and fires at time t+ 5 so neuron rn receives
two spikes during one step. This increments the value of counter rn by one.

When neuron li3 fires, a spike is also sent to neurons li5 and li6. Now one of
these two neurons is chosen nondeterministically to spike during time t+ 6 and
the other neuron spikes during time t+ 7. (Again, this is guaranteed because of
the delay associated with both rules.) These spikes guarantee that neuron li7 will
spike at time t+8 (nondeterministically applying either of its rules) and neuron
li8 will spike at time t+ 9. If neuron li7’s second rule is applied, neurons li9 and
lia both receive a single spike at time t+ 9 (from neuron li8). This causes li9 to
spike at time t + 10 which is also the time step where neuron li7 fires sending
spikes to neurons li9 and lia. (So in the previous step neuron lia contained one
spike and now after one step it contains three spikes.) Neuron li9 will again spike
at time t + 11 causing both neuron lia (with 4 spikes) and neuron lib (with 2
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Fig. 3. Strongly Sequential Unbounded SNP Subtraction Module

spikes) to become fireable. If neuron lia forgets at time t + 12 (causing neuron
lib to fire at time t+ 13) we will not have a fireable rule at time t+ 14 creating
an invalid computation. If neuron lib fires at time t+ 12 (causing neuron lia to
forget at time t+ 13), instruction lj will begin to be simulated at time t+ 14.

If neuron li7 had chosen its first rule to fire (at time t+ 8), both spikes from
neurons li7 and li8 are received at time t+ 9 by neurons li9 and lia making both
fireable. If neuron li9 forgets at time t + 10, then neuron lia will fire at time
t+ 11 causing no neuron to be fireable at time t+ 12 (an invalid computation).
If neuron lia fires at time t + 10, then neuron li9 will forget at time t + 11 and
initiating instruction module lk at time t+ 12.

The SUB instruction is easier to simulate (since no checking for zero is nec-
essary) and is shown in Figure 3. This module is again initiated by a single spike
in neuron li which sends a spike to both neuron li1 and li2 at time t+ 1. These
two neurons spike during the next two time steps (t+2 and t+3) causing neuron
li3 to spike at time t+ 4 (sending a spike to neuron rn) and li4 to spike at time
t + 5. Due to the delay, the second spike sent to neuron li3 is not received. If
the counter rn is storing a positive count, neuron rn will fire during time t + 6
causing neuron li5 to receive two spikes at the same time. If this occurs, neuron
li5 fires and initiates instruction module lj. If neuron rn contains only one spike,
no neuron will be fireable at time t+ 6 creating an invalid computation.

Since neuron rn may be shared with other instructions we must guarantee
additional neurons are not initiated when rn spikes. Neuron rn only has outgoing
edges to neurons li′5 where li′ = (SUB(rn), lj′). None of these neurons will fire
since no additional spike is present. However, these neurons must be cleaned-
up to guarantee no spike lingers causing problems later. To achieve this, when
neuron li5 fires, it has a delay of s − 1 time steps where s is the number of
instructions of the form li′ = (SUB(rn), lj′) in M. This delay allows every li′5
to forget the extra spike it received before the next instruction executes.

The HALT instruction is simulated by the output module shown in Figure 4.
The HALT instruction initiates the output neurons and then halts the compu-
tation. The module is initiated by a single spike sent to neuron r1 which causes
the value stored in neuron r1 (x1) to be output. (After the first output x1 is
sent to the environment, the neuron r2 is triggered to output x2. ) For each
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Fig. 4. k-Output Strongly Sequential Unbounded SNP Module

neuron ri, when it is triggered with an additional spike it will contain an odd
number of spikes. (This never happens previously in the computation since the
output counters are non-decrementing counters.) This causes the neuron to fire
sending spikes to neurons i1, i2, i3, and di

1 making all four neurons fireable.
Now neuron di

1 contains 4 spikes which can be forgotten. If the forgetting rule
is applied before all neurons i1, i2, and i3 have fired, there will be no fireable
rule at some time slot between t+ 6 and t + 8 causing an invalid computation.
A valid computation nondeterministically fires neurons i1, i2, and i3 at times
t+2, t+3, and t+4. Then neuron di

1 forgets its spikes at time t+5. This causes
neurons i4, i5, and i6 to fire sequentially during the next three time steps (t+ 6
to t+ 8) with delays respectively.

Neuron i4 fires sending a spike to neurons ri and di
1 at time t + 6 which

will nondeterministically guess that either neuron ri has been fully decremented
(causing neuron di

1 to spike at time t+7) or that it hasn’t (causing neuron ri to
spike at time t+7). Neurons i5 and i6 work together to send two spikes to neurons
i7 and OUTi simultaneously. Thus at time t+ 9 both neurons are fireable. The
first time this occurs, neuron OUTi will fire at time t + 9 sending a spike to
neuron OFFi with a delay of 1 time step. During this delay, neuron i7 will forget
its spikes (time t+10) and then neuron OFFi will spike (time t+11) with a delay
of 10 time steps causing neuron SYSTEM OUTi to receive a spike at time t+21.
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(If neurons i7 and OUTi fire in the reverse order, there will be no fireable rule
at time t+11 causing the computation to become invalid.) This loop is repeated
identically for the next decrement of ri until neurons i7 and OUTi again become
fireable. (So for time steps t+ 12, · · · , t+ 19 a valid computation will cause the
neurons ri, i1, i2, i3, di

1, i4, i5, i6 to spike sequentially where the order of i1, i2, i3
can be interchanged.) Remember that each xi ≥ 2 so a valid computation must
make this loop at least twice. Now neuron i7 will spike at time t + 20, neuron
OUTi will forget at time t+ 21, and neuron SYSTEM OUTi will spike at time
t+22 with a delay of one time step. This initiates the output value at time t+23.
(Again, if neuron OUTi is fired before neuron i7 there will be no fireable rule at
time t + 30 causing the computation to become invalid.) If counter ri contains
a count greater than 2, then this decrementing loop must be rerun xi − 2 more
times. For each of these loops, when both neurons i7 and OUTi are fireable, a
valid computation will have neuron i7 fire at each time t+20+11x and neurons
OUTi and i8 fire at times t+ 21 + 11x and t+ 22 + 11x (nondeterministically)
for 0 ≤ x ≤ xi − 2.

When the system guesses that ri no longer can be decremented, neuron di
1 fires

at some time t+ 23+ 11x (which sends a spike to neuron ri making it no longer
fireable and leaving it with 2 spikes if the guess was correct). This is followed
by neurons di

2, · · · , di
8 firing sequentially during times t+ 24 + 11x, · · · , t+ 30 +

11x. Neuron di
7 sends a spike to neuron OUTi making it fireable during time

t + 31 + 11x. At time t + 31 + 11x neuron OUTi fires followed by neuron i8
and then neuron OFFi with a delay of 11 − oi steps. (If neuron i8 fires first,
the computation becomes invalid.) During this delay, neurons Di

1 to Di
11−o1

fire
(time t + 34 + 11(xi − 2) = t + 12 + 11xi to time t + 22 + 11xi − oi). (Since
0 ≤ oi ≤ 10 there is guaranteed to be at least one of these delay neurons.)
Once neuron Di

11−oi
fires, neuron SYSTEM OUTi receives the delayed spike

and spikes at time t+11xi +23− oi. Therefore, the output generated by neuron
SYSTEM OUTi is 11xi − oi. Finally, if i < k (i.e. this is not our last output),
neuron ri+1 receives a spike and then fires during the next time step.

This process is repeated for each ri for 1 ≤ i ≤ k allowing every generated
output xi to be sent to the environment as a multiple of 11 with an offset of oi

by the corresponding neuron SYSTEM OUTi. �


Lemma 3. If Q(M) ⊆ Nk is generated by a k-output PBCM M, then it can
be generated by a k-output strongly sequential unbounded SNP Π.

Proof. Let M be a k-output PBCM M which generates the set Q(M). Define
11k ∗2k new k-output PBCMsM(o1,···,ok,c1,···,ck) such that Q(M(o1,···,ok,c1,···,ck))
= {((x1+o1)/11, · · · , (xk +ok)/11) | (x1, · · · , xk) ∈ Q(M), (xi+oi) is divisible by
11 for 1 ≤ i ≤ k, if ci = 1 then (xi + oi)/11 ≥ 2, if ci = 0 then (xi + oi)/11 = 1}
where 0 ≤ oi ≤ 10 and ci ∈ {0, 1}. This can easily be done by simulating
M with k new output counters. Once the computation halts, the old counters
are decremented by there appropriate offset (oi for counter i) respectively and
transferred to the new output counters. The transfer is done by decrementing
each old output counter and incrementing the new corresponding output counter
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Fig. 5. k-Output Strongly Sequential Unbounded SNP Module with Offsets for Coun-
ters Containing One

for every eleven decrements. For each counter i where ci = 0, we decrement
the original output by exactly 11 and increment the new output counter by 1.
For each counter i where ci = 1, we decrement the original output 22 + 11x
times (where x ≥ 0) and increment the new output counter by 1 for each 11
decrements. The machine nondeterministically guesses when the old counter has
reached zero.

We construct a k-output strongly sequential unbounded SNPΠ(o1,···,ok,c1,···,ck)
11

which generates the set Q(Π(o1,···,ok,c1,···,ck)
11 ) = {(11x1 − o1, · · · , 11xk − ok) |

(x1, · · · , xk) ∈ Q(M(o1,···,ok,c1,···,ck))} by simulating each M(o1,···,ok,c1,···,ck). We
use the construction given in Lemma 2 with a slight modification to the output
module. In the output module of Lemma 2 (Figure 4) we duplicate the neu-
rons given for each output. We use this structure only for the set of neurons
{ri | ci = 1, 1 ≤ i ≤ k} (meaning xi ≥ 2). To output the remaining neurons
{ri | ci = 0, 1 ≤ i ≤ k} we use a new output module given in Figure 5. This new
module allows these neurons which store the value 1 (2 spikes) to be decremented
only once in a strongly sequential manner.

We output the value stored in neuron ri by sending an additional spike to
neuron ri. This causes neuron ri to fire consuming 3 spikes at time t+1 (where t
is the time that the initial spike is sent to neuron ri) sending a spike to neurons
i1, i2, and i3. These three neurons fire nondeterministically during time steps
t+2, t+3, and t+4 causing neurons i4, i5, and i6 to fire sequentially during the
next three time steps. These spiking neurons send a spike to neuron OUTi and
two spikes to neuron ri at time t+ 7. The two spikes sent to neuron ri allow it
to halt with the appropriate two remaining spikes (assuming neuron ri initially
did store a correct count of one). Neuron OUTi will spike at time t+ 8 causing
neuron SYSTEM OUTi to spike at time t+9 (with a delay of one). Also at time
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Fig. 6. Strongly Sequential Unbounded SNP Union Module

t + 9 neurons OUT1 and di
1 receive spikes from neuron i6. If neuron di

1 spikes
before neuron OUTi spikes, time t + 15 will have no fireable rule causing an
invalid computation. A valid computation will have neuron OUTi spike followed
by neurons di

1, · · · , di
11−oi

. When neuron di
11−oi

fires (with a delay of one) the
spike sent by neuron OUTi is received by neuron SYSTEM OUTi. This will
cause SYSTEM OUTi to spike at time t+ 10 + 11− oi (generating the number
11 − oi). If i �= k, the spike triggering neuron ri+1 is received during this last
step causing neuron ri+1 to spike at time t + 22 − oi. After outputting ri, all
neurons in this module will contain zero spikes with neuron ri containing two
spikes (unless ri did not contain the correct count of one).

To regain Q(M), we take the union of all of these sets. Figure 6 shows a
union module which operates in a strongly sequential manner and nondetermin-
istically executes either machine Π1 or Π2. The set R (containing neurons which
will contain exactly two spikes in a halting computation) is defined as neurons
r1, · · · , rk of both set modules. The set module that is picked nondeterministi-
cally will leave it’s neurons in the correct configuration when the system halts
(assuming a correct computation occurred), but the alternate set module will
still have its neurons left in the initial configuration. Therefore, we will use the
union module to guarantee that the alternate set generating module is left in a
correct halting configuration. If the machine Π1 is picked to be executed, two
spikes are sent to neurons r1, · · · , rk in Π2 to leave them with two spikes. Two
spikes are also sent to neurons OUT1, · · · , OUTk in Π2 which allows the initial
spikes to be forgotten in k steps. The neurons di

1 in Π2 where ci = 1 are also sent
two spikes while neurons i7 and OUTi (where ci = 1) are sent three spikes. This
allows these initial spikes to be forgotten in 3k′ steps where k′ is the number
of ci′ ’s = 1. Since the computation of Π1 is initiated after a delay of k + 3k′

steps, all of the initial spikes in Π2 are forgotten before the execution of Π1 can
occur. (If machine Π2 is non deterministically selected for execution, the same
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Fig. 7. k-Output Strongly Sequential Unbounded SNP Generating the Union of Sets
with Offsets

procedure occurs to leave Π1 in a correct halting configuration.) The resulting
generated set is Q(Π1)∪Q(Π2). Figure 7 shows how each of these set generator
modules can be linked (with the system output neurons of each set generator
module combined) so that at the start of computation, one and only one set
generator module is executed which generates some k-tuple. This entire system
will now generate the set Q(Π) = Q(M). �


From Lemmas 1, 2, and 3 we get the following result.

Theorem 1. A set Q(M) ⊆ Nk is generated by a k-output PBCM M if and
only if it can be generated by a k-output strongly sequential unbounded SNP Π.
Hence, such SNPs are not universal.

2.2 Relaxing the Strongly Sequential Operation

If we relax our strongly sequential unbounded SNP model to allow time steps
with no fireable rules, we can show universality. We will call such models simply
sequential unbounded SNPs. Universality is shown by giving a construction such
that any 1-output CM M can be simulated by a sequential unbounded SNP Π .
It is well known that 1-output CMs are universal.

Theorem 2. Sequential unbounded SNPs are universal.

Proof. Given some multicounter machine M generating a set Q(M), we can
simulate M with a sequential unbounded SNP Π11 which generates the set
Q(Π11) = {11x | x ∈ Q(M)}. (We only need one non-decrementing output
counter r1 in M.) The SNP Π11’s initial configuration will again start with
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the initial configuration for each module along with a single spike in neuron
l0. When the computation halts, all Π11’s neurons are empty except neuron r1
which contains exactly two spikes.

To create a sequential unbounded SNP generating exactly Q(M) we use the
same ideas and methods given in Lemma 3. First we create 11 new multicounter
machines Mo for 0 ≤ o ≤ 10 generating the sets Q(Mo) = {(x + o)/11|x ∈
Q(M), (x + o) is divisible by 11}. We then simulate each Mo with a sequen-
tial unbounded SNP Πo

11 which generates the set Q(Πo
11) = {11x − o | x ∈

Q(Mo), 0 ≤ o ≤ 10}. The union of these 11 set generators (using the union
module in Figure 6) creates one large sequential unbounded SNP Π ′ such that
Q(M) = Q(Π ′). Again the union module is used to both select which set gen-
erator module to execute and to guarantee a correct halting configuration (by
sending two spikes to the unexecuted neuron OUT which are forgotten and one
spike to the unexecuted neuron r1 which remains along with a second spike sent
at the end of computation by neuron SYSTEM OUT).

To show that this SNP model can simulate any 1-output CM M by a 1-
output sequential unbounded SNP we must simulate instructions of the forms
li = (ADD(rn), lj, lk), li = (SUB(rn), lj), and li = HALT . For each of these
instruction types, we again create an SNP module. We use our previous technique
given in Lemma 2 (Figure 2) to simulate each ADD instruction.
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a a;2

a a;2 a2 a;2

a3(a2)*/a3 a;0rn

a a;2

a

a2 a;1

a3
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a3 a;2s-1
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ljlk

a a;2

a3 a;1

li1 li2 li3

li4 li5 li6

li7 li8

a a;2s+1

li9
a a;0

lia

Fig. 8. Sequential Unbounded SNP Subtraction Module

To simulate a SUB instruction, the previous subtraction module was unable
to test a counter for zero so we must create a new module for this instruction
type. The new module is shown in Figure 8. It is initiated with a single spike
in neuron li which immediately sends a spike to neurons li1, li2, and li3 during
time t+ 1 (where t is the time the initial spike is sent to neuron li). These three
neurons nondeterministically spike during the next three steps (time t+2, t+3,
and t+ 4). This causes neurons li4, li5, and li6 to spike sequentially during the
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Fig. 9. Sequential Unbounded SNP Output Module

following three time steps (time t + 5, t + 6, and t + 7). The firing of neuron
li4 sends a spike to neuron rn causing it to contain an odd number of spikes. If
the counter is non-zero, neuron rn will fire during time step t+ 8, otherwise no
neuron will fire at time t + 8. (This step with a possibility of no fireable rule
which allows us to test the counter for zero.)

If neuron rn fired, neurons li7 and li8 receive three spikes simultaneously.
This causes neuron li8 to fire initiating instruction lj after a delay. The delay is
necessary to guarantee all the remaining spikes are ‘cleaned-up’. Since neuron
rn sends spikes to all neurons li′7 and li′8 where li′ = (SUB(rn), lj′ , lk′), these
neurons receive a single spike during the computation of instruction li. These
spikes must be forgotten before the next instruction executes. (None of these
neurons will be fireable.) We denote the number of these instructions by s so li8
will delay firing for 2s− 1 steps to guarantee that everything is cleaned-up.

If neuron rn does not fire, neurons li7 and li8 receive only two spikes simul-
taneously. This causes neuron li7 to fire (at time t+ 9 or t+ 10 with neuron li8
forgetting its spike during the alternate time slot) sending a spike to neurons li9
and rn. During the next time step neuron li9 fires sending a spike to neurons
rn and lia. Neuron lia is now fireable initiating instruction lk after a delay to
allow the system to ‘clean-up’. Now neuron rn fires removing the spikes added by
the current subtract module. This sends spikes to all neurons li′7 and li′8 where
li′ = (SUB(rn), lj′ , lk′) so 2s steps are needed to guarantee that these spikes are
all removed. (The delay for neuron lia allows 2s+ 1 time steps to pass to allow
neuron rn to spike and guarantee all neurons li′7 and li′8 forget their spikes.)

To simulate li = (HALT ) we create the module given in Figure 9. This
module decrements neuron r1 and sends three spikes to neurons li1, li2, and li3
which fire nondeterministically during the next three time steps. Neurons li4,
li5, and li6 now spike sequentially. Neuron li4 initiates the next loop (if counter
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neuron r1 is not yet zero) after a delay of 5 time steps. Meanwhile, neurons li6
and li5 operate together to trigger neuron OUT which triggers the SYSTEM
OUT neuron. Neuron li7 spikes one loop behind neuron 6 so that neuron OUT
receives a single spike both the first time r1 is decremented and the last time
r1 is decremented. During intermediate loops, neuron OUT receives two spikes
together which are then forgotten. After neuron SYSTEM OUT fires for a second
time (generating the output 11x − o), neuron CLEAN fires sending a spike to
neuron r1. At this point, the computation halts with all neurons empty except
neuron r1 which contains two spikes (assuming a correct computation). �


2.3 Strongly Sequential General SNPs

If we keep the strongly sequential requirement, but now allow general neurons,
the model becomes universal. In fact, for universality we only need three general
neurons which allow the rules a3(a2)∗/a3 → a; 0 and a → a; 2 to coexist. (This
is due to the fact that 3 counters is sufficient for universality in a CM.)

Theorem 3. Strongly sequential general SNPs are universal.

Proof. Again this can be shown in the same manner as previous proofs and
follows from the proof of Theorem 2 with a change to the subtraction module.
The new subtraction module is shown in Figure 10.
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Fig. 10. Strongly Sequential General SNP Subtraction Module

The operation of this module occurs identically to the subtraction module in
the proof of Theorem 2 up until a spike is sent to neuron rn. Here, if rn contains
a non-zero count, the first rule will be applied otherwise the second rule will
be applied which allows a strongly sequential computation. The remainder of
the computation also follows from the proof of Theorem 2 except that there is
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no need to remove a spike from neuron r when it contains a zero count. (This
module allows many computations which are invalid based on our definition,
but there exists a computation which correctly subtracts one (two spikes) from
neuron r and has a neuron spike during each time step.) �
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Abstract. Chemical signals composed of excitation pulses can be
processed in a medium with an appropriate geometrical arrangement
of excitable and non-excitable regions. In this paper we consider two
types of signal processing devices: a binary logic gate and a four input,
neuron like structure. Using numerical simulations, we demonstrate that
small local changes in the excitability level of the medium can completely
change the function executed by the device and can thus be used to pro-
gram it.

1 Introduction

Recently, a growing interest in unconventional methods of information processing
can be observed. This interest has been motivated by a common expectation
that unconventional computers will be able to solve specific problems faster
than the classical ones, characterized by the von-Neumann-type architecture. A
significant number of studies are concerned with reaction-diffusion computing,
i.e. the information processing with the medium described by a set of parabolic
partial differential equations [1]. The reaction-diffusion computing includes very
different systems like arrays of quantum dots acting as coupled single electron
oscillators, or far-from-equilibrium chemical systems like Belousov-Zhabotinsky
(BZ) reaction. However, due to similarities in the mathematical description many
results concerned with information processing in a specific type of reaction-
diffusion medium are generic and they can be easily adopted to other systems.
Having this in mind, one can find numerous studies on information processing in
chemical systems because both experiments and simulations are relatively easy.
On the other hand, the experiments with especially prepared semiconductors in
which the carrier density evolves according to reaction-diffusion equations [2] are
very difficult, but it is expected that these systems will have an important impact
on industrial applications of unconventional computers in the near future.
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In this paper we are concerned with information processing in an excitable
chemical reaction-diffusion medium. In a spatially distributed medium, a local
perturbation can develop into a propagating pulse of excitation in which the
concentration of the activator is high. Spatio-temporal evolution of the medium
can be interpreted in the language of logic operations when one associates the
excitation pulse with the logical ”true” state and the non-excited medium with
the logical ”false”. Within such an interpretation, a propagating pulse of exci-
tation corresponds to a single bit of information moving in space. A chemical
signal is formed by a number of pulses. For information processing applications,
it is convenient to consider a nonhomogeneous medium characterized by differ-
ent excitability levels at various points of space. Let us assume that we are able
to fix the local excitability level from a high value (a pulse propagates retaining
its shape) to a low one where excitations rapidly decay and signals die. In such
nonhomogeneous medium, one can create excitable channels surrounded by non-
excitable medium, so pulses of excitation can propagate within channels without
interfering one with another.

Logical operations are executed through interaction of pulses. By selecting
the proper geometry of excitable and non-excitable (inhibitory) regions, one can
force the required type of interaction between pulses and construct devices exe-
cuting given logical functions, like for example binary logical operations [3]. Using
the concepts of pulse based logic, a number of devices performing specific infor-
mation processing operations have been designed [4,5,6,7,8,9,10]. The majority
of such devices should be classified as instant machines able to perform a single
specific function. Typical instant machines, even if they are linked together, do
not give us the flexibility required to perform multiple tasks. In systems com-
posed of instant machines the change of connections between signal processing
elements seem to be the only method to modify the function performed by the
device. However, it is quite easy to design chemical signal processing devices in
which the interaction between signals strongly depends on external factors reg-
ulating the local excitability level like: temperature, inflow of reactants or light
intensity. Such factors can be used to modify the performed signal processing
operations and so they can be used for programming [11]. In this paper, we dis-
cuss two devices that are able to perform different functions depending on the
local excitability levels of the medium they are composed of. One of them is a
logical gate that can execute different functions depending on the excitability of
its junctions. Another is a neuron-like device for which the excitation threshold
can be controlled by the parameters of medium. We demonstrate that significant
changes in functionality of these devices can be introduced with relatively small
changes in the parameters. Both considered devices can be incorporated into
programmable networks in which the functionality is controlled by an external
factor. Such control is an important step towards realization of reaction-diffusion
devices able to perform complex operations. Our studies are based on numerical
simulations of information processing in Ru-catalyzed BZ reaction. In such a
case the excitability can be easily controlled by the external illumination. We
have selected such system because the experimental verification of our ideas does
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not seem difficult. Of course the presented results seem generic and they can be
applied to the other types of excitable medium.

2 Different Operations at a Single Binary Gate

The device that performs different binary logic operations depending on local
illumination levels is shown in Fig. 1. Two input channels (A and B) are linked
with the output channel O through a number of excitable channels and non-
excitable gaps separating them. All junctions in the device illustrated in Fig. 1
are non-symmetrical and for a moderate illumination at the gap they work as
chemical signal diodes [3,12] transmitting the signals from a flat to a triangular
excitable region only. Of course, for a low illumination level the junction trans-
mits chemical signals in both directions and for a high illumination level it is
unpenetrable.

(a) (b)
A

C C

B

O

D1

D2

D3

O1

O2

O3

O1

O2
O3

D1

D2

D3

Fig. 1. A logic gate that executes different binary operations on inputs A and B de-
pending on the illumination level at the diodes D1, D2 and D3. (a) the geometry
of excitable(black) and non-excitable(white) regions in the device. (b) the position of
regions with controlled excitability (grey).

We have studied the behaviour of the device in numerical simulations based
on 2-variable Oregonator model of Ru-catalyzed BZ reaction :

∂u

∂t
=

1
ε

[
u(1− u)− (fv + φ)

u − q
u + q

]
+Du∇2u

∂v

∂t
= u− v .

(1)

where u and v are dimensionless concentrations of HBrO2 and Ru(4, 4′ − dm−
bpy)3+3 , respectively. The diffusion of the ruthenium catalytic complex is ne-
glected because it is much smaller than that of other reagents. In the model the
parameter φ represents the rate of bromide production caused by illumination
and it is proportional to the applied light intensity. Bromine is an inhibitor of
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Ru-catalyzed BZ reaction so the non-illuminated areas are excitable and the il-
luminated ones are not. Adjusting the local value of φ the regions with required
level of excitability can be created. The results presented in Fig. 2 has been ob-
tained from a numerical solution of Eqs. (1) for a section of the system covering
inputs, the central area and outputs O1, O2 and O3. The right part of the device
just groupsO1,O2 andO3 into a single output signal. The square grid of 150×150
points was considered with no flux boundary conditions at its ends. The free flow
boundary conditions between excitable and non-excitable regions have been as-
sumed. The calculations have been performed for ε = 5.0×10−2, q = 1.5×10−4,
f = 1.0 and Du = 1.0. We have used Δx = 0.18 and Δt = 8.1 × 10−5. The
illumination in the excitable regions is φ = 7.0×10−3 and in the inhibitory ones
2.0 × 10−1. The excitability of the gaps in diodes D1, D2 and D3 (cf. Fig. 1B)
have been individually controlled. In Fig. 2, pulses of excitation are marked as
light areas on the structure.
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Fig. 2. (a) and (b) - an OR gate, (c) and (d) - an AND gate, (e) and (f) - an XOR
gate. The columns (a),(c),(e) show the time evolution of pulses for the input A = 1
and B = 0, (b),(d),(f) correspond to A = 1 and B = 1. The time difference between
successive figures in a column is 1 unit.

Figs. 2(a),(b) show the evolution of excitation pulses coming from inputs A
andB, when the gap illuminations are

(
φ(D1), φ(D2), φ(D3)

)
= (0.20, 0.18, 0.20).

In such a case the device works as an OR gate. The excitability at D2 is high
enough to transmit excitation of the central area C generated by a single input
pulse. When two input pulses come to C, the excitations are
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integrated and transmitted as a single output. The excitabilities of D1 and D3
are low, so no pulse is transmitted through these gaps. Fig. 2(c),(d) correspond
to
(
φ(D1), φ(D2), φ(D3)

)
= (0.20, 0.195, 0.20). In such case the device works as

an AND gate. The excitability of D2 is now a bit lower than before and out-
put pulse appears only when two input pulses come to C simultaneously. Fig.
2(e),(f) correspond to

(
φ(D1), φ(D2), φ(D3)

)
= (0.19, 0.20, 0.19) and such case

the device works as an XOR gate. The excitability in D2 is so low that an output
pulse does not appear in O2 even if two input pulses come to C simultaneously.
The device shown in Fig. 1 can work as NOT gate when one of input pulses in
XOR gate is considered as the reference signal [3].

3 Chemical Neuron Controlled by External Illumination

Another information processing device that can be easily controlled by illumi-
nation is illustrated in Fig. 3. It has a neuron like shape. We can recognize four
identical excitable input channels (dendrites), the cell body C, and the excitable
output channel A (the axon). All input channels have the same length, width
d = 1.2213a.u. and the same excitability characterized by Φa. The widths of
input channels have been chosen such that the channels are subexcitable which
means that the amplitude of excitation pulse decays as it travels along the chan-
nel. Choosing the proper lengths of input channels we are able to obtain the
required amplitude of activator at the gap separating an input channel from C
after the input excitation is applied at the end of input channel (dark gray areas
in Fig. 3). The output channel A (Φa) is significantly wider (d = 1.7641a.u. )
than the input channels and it is just excitable. An output pulse propagates
in this channel without changing its shape. The input channels are separated
from excitable central area C (Φc = Φa) by passive gaps with the same width.
The properties of the gaps are controlled by the illumination (Φp) of the sur-
rounding nonexcitable medium. The response of neuron like structure to pulses
of excitation is calculated using 3-variable Oregonator model for photosensitive
Belousov-Zhabotynsky reaction [13]:

ε1
∂u

∂t
= u (1− u)− w (u− q) +DuΔu

∂v

∂t
= u− v

ε2
∂w

∂t
= Φ+ fv − w (u+ q) +DwΔw .

(2)

Here w is the dimensionless concentrations of Br−. The dimensionless units
of space and time has been chosen to scale the reaction rates and the diffusion
coefficient Du(= 1). Eqs. (1) can be obtained from Eqs. (2) if we assume that
diffusion and relaxation of Br− are much faster than the other variables (ε2 <<
ε1). In numerical simulations we use Du = Dw = 1, ε1 = 0.08, ε2 = 9.7 · 10−4,
f = 1.12 and q = 0.002. The calculations have been performed using the explicit
Euler algorithm for the diffusion combined with the 4-th order Runge-Kutta
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Fig. 3. A chemical neuron-like signal processing element. The white area is passive, the
gray parts active. Regions where input channels 1,2, 3,4 are excited are marked dark gray.

method for chemical kinetics with spatial step Δx = 0.14 and temporal step
Δt = 0.0001. We have studied the response of the neuron for excitation of a
chosen number of input channels for different values of Φa and Φp. For example,
Fig.4 shows the concentration of u at the marked points of the device (cf. Fig. 3)
for the case when Φa = 0.00700336 and Φp = 0.0454. Fig. 4a shows the case when
channels 2 and 3 are excited and Fig. 4b corresponds to the case when channels
1, 2 and 4 are excited. In the first case there is no input signal, in the second the
input signal appears. The response of the chemical neuron to the correlated input
signals for different values of Φa and Φp is summarized in Fig.5. It is interesting
that the behavior of the neuron can be controlled by small changes in one of these
parameters. If illumination is low (excitability high) the output signal appears
if only one of the inputs is activated so the neuron works as a multiple OR gate
(A = I1 ∨ I2 ∨ I3 ∨ I4). For higher illuminations two of the inputs have to be
activated to get an output signals so now A = (I1∧I2)∨(I1∧I3)∨(I1∧I4)∨(I2∧
I3) ∨ (I2 ∧ I4) ∨ (I3 ∧ I4). For yet lower excitability three input signals activate
the neuron and A = (I1 ∧ I2 ∧ I3)∨ (I1 ∧ I2 ∧ I4)∨ (I1 ∧ I3 ∧ I4)∨ (I2 ∧ I3 ∧ I4).
Further increase of illumination changes the executed function into multiple
AND: A = I1 ∧ I2 ∧ I3 ∧ I4. Of course for yet lower excitability, the neuron
never gets excited. The response of the device to a simultaneous excitation of
specific input channels as a function of Φp or of Φa is summarized in Fig.5. For
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Fig. 4. The time evolution of u(r) at the selected points of the device ( these points
are marked by dots on Fig.3) for Φp = 0.0454 and Φa = 0.00700336. Fig 4a - channels
2 and 3 are initially excited. Fig 4b - channels 1, 2 and 4 are initially excited.
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Fig. 5. The response of the chemical neuron with respect to all combinations of the
input signals. The thick black line indicates illuminations at which the output signal
appears. The gray lines correspond to the cases where output is not excited. Two
vertical dashed lines illustrate the minimum illumination at which no single input
creates output excitation and the minimum illumination at which no combination of
two input excitations generates an output signal. Fig. 5a — Φa = 0.007, Fig. 5b —
Φp = 0.0454.

example (cf. Fig 5b), when Φp = 0.0454, the neuron gets excited by a single
excited input channel if Φa < 0.00700226. For 0.00700288 ≤ Φa < 0.00700293
a simultaneous excitation of any two (or more) channels gives an output pulse.
When 0.00700335 ≤ Φa < 0.00700337 the device does not produce the output
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signal if it is excited by two channels only. Such signal appears after excitation of
any three input channels. Finally, for 0.00700354 ≤ Φa < 0.00700370 the device
can be excited only by a simultaneous excitation of all inputs, so it works as ”all
or nothing” neuron. Between the intervals of illumination mentioned above, the
device performs yet more complex logical functions that can be also important
in special applications.

4 Discussion

In this paper we have discussed two examples of chemical signal processing de-
vices that can be controlled by an external factor that determines the excitability
of the medium. We have demonstrated that the functions performed can be com-
pletely changed by small changes in values of parameters controlling the medium.
Our results can be seen as a generalization of the studies on propagation of wave
fragments in sub-excitable medium [14,15] and their use for collision-based logic
[16]. In the devices discussed above the required changes in illumination level
are much smaller than in the case of homogeneous medium considered in the
papers mentioned above, because the architecture of excitable and nonexcitable
regions has been already designed for information processing.

We have adopted two strategies of chemical neuron control. According to
the first of them, the properties of gaps separating signal channels are properly
adjusted. Having in mind analogies with biological systems, they can be seen as
a modification of synapses. The second strategy controls the excitability of signal
channels that corresponds to the properties of nerve connections. In both cases
(cf. Fig. 5) we have found that tiny changes in excitability significantly modify
the functions executed by a neuron, so they can be related to minor changes in
concentrations of reagents forming a complex network of biochemical reactions
within a nerve cell.

The spatial scale of the considered devices is determined by the diffusion speed
and the reaction rates. For example, in Ru-catalyzed BZ reactions the channels
are about 1 mm wide and gap widths are measured in hundreds of μm. If the
signal channels are too narrow then the reagents diffuse away and a pulse of
excitation dies fast. Therefore, the spatial scale of the devices can be scaled
down only if the medium used allows for it.

In the paper we have described the response of signal processing devices to a
single set of input signals, which corresponds to the simplest binary information
coding. It seems more interesting to consider another types of coding, based on
trains of spikes, as it looks more suitable for excitable medium. Such coding may
be linked with a multiple-valued logic. The fact that signals can be significantly
changed after propagation through gaps [17] gives us another level of complexity
that can be used in signal processing with reaction-diffusion medium. We hope
to discuss some aspects of this problem in near future using numerical simu-
lations. Experiments with trains of pulses corresponding to logical states using
Ru-catalyzed BZ reaction become difficult because the processes in the chemical
medium are quite slow (the speed of excitation pulses on a membrane is of the
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order of millimeters per minute) and it is hard to keep the system at a sta-
tionary condition for a long time. In this respect the semiconductor information
processing medium with reaction-diffusion dynamics of carriers [2,18] looks more
promising for the experimental realization of the considered devices.
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Abstract. DNA molecules have been assembled in rigid DX and TX
molecules, arrayed in assemblies similar to Wang tiles, and, as flexible
branched junction molecules with flexible arms have been used in assem-
blies representing arbitrary graphs. This paper considers both models of
rigid and flexible tiles. A model representing complexes assembled out of
rigid tiles based on tile displacements is presented. This presentation is
used to simulate computations obtained from (bounded) rigid tile self-
assembly by corresponding assemblies of flexible tiles.

1 Introduction

While most work in DNA nanotechnology of array assemblies and computa-
tion has been done with tiles with rigid arms [16,10], a variant using “flexi-
ble tiles” with flexible arms has recently appeared in construction of arbitrary
graphs [12,5], with somewhat different properties and computational power. Very
roughly, rigid tile computation is associated with all recursive functions [15],
while flexible tile computation is associated with nondeterministic polynomial
time computable functions [8].

In order to make a direct comparison of their computational power and their
ability to directly simulate each other, we need mathematical descriptions of the
assembled complexes. In this note, we use flexible tile assembly to simulate rigid
tile assembly, and in order to do this, we devise a mathematical formalization of
rigid tile assemblages. The rigid tile model presented here is different than the
models considered in [14,11], where the bonding strength of each joining port is
essential. In this paper we concentrate on the geometry of the final product of
the assembly as the shape and architecture of the (possible) complete complex
emerges. The order of assembly of the tiles is not of essence.

Molecules and other nanostructures have been modeled with tinkertoy-like
assemblies for a century now, but there is still little formal apparatus to de-
scribe these assemblages. Both the connections between individual components
and the macroscopically observable phenomena that these structures generate
have been modeled using highly sophisticated mathematics, but the structure
of the assembly itself has been largely ad hoc. Now that complex (nano-) as-
sembly has become one of the pre-eminent areas of scientific research (“chemical
self-assembly” was one of the top 25 open questions listed recently in Science
[13]), there should be considerable demand for a formal system describing the
complexes experimentalists construct.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 139–151, 2006.
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The method developed in this note for identifying the complete complexes
is based on displacement and rotation transformations. It describes paths in a
complex from one rigid tile to another. This description can be encoded into
flexible tiles so that, within certain restrictions, a (sufficiently small) complete
flexible tile complex is possible if and only if a (sufficiently small) rigid tile
complex is possible.

Since the vehicle for this paper is the representation of rigid tile assembly
by flexible tile assembly, we first outline the origins and interest behind the
latter model. The flexible tile model was introduced in [7] with the goal of more
readily generating complexes in the form of arbitrary graphs. Most extant models
were based on tiling the planes, and thus were usually regular or domino-like
planar tiles, and thus could not be used to, say, construct copies of non-planar
graphs. With non-planarity in mind, the flexible tile model was used to model
the assembly of non-planar constructs. One way to look at the flexible tile model
is as a variant of the rigid tile model, as follows. While a (rigid) tile would be a
starfish-shaped object, with rigid arms extending in various directions from the
center, and connecting to other rigid tiles at ports (often called “sticky ends”)
on the tips of the arms, a flexible tile is more like an octopus, with flexible
tentacle-like arms attached to the center, and connecting to other flexible tiles
via ports at the tips of the tentacles. A graph might be difficult to construct
out of starfish – one must worry about the geometry of the arms – but it is not
difficult to arrange complementary tentacles to connect up in an arbitrary graph
structure. This is illustrated in Figure 1.

Two flexible tiles with two compatible bonds

Bonding of flexible tiles
Bonding of rigid tiles

Two rigid tiles with two compatible bonds

Fig. 1. Flexible vs rigid tile connections

There is one important distinction between the rigid tile and flexible tile mod-
els, as currently extant. (We use the term “query” to represent the formalization
of the question that a given computation is to answer; in this paper, this answer
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is encoded in the existence and structure of (appropriate) complete complexes.)
In the rigid tile model, for any one query, one uses a fixed set of types of tiles,
and the input is used to generate a seed that grows into a complete complex,
which represents the output. In the flexible tile model, the query has an associ-
ated program which takes an input and generates a set of types of tiles, and the
output is represented by a “sufficiently small” complete complex (if any).

In this paper, we present a method that describes a complete complex of rigid
tiles by giving the relative positions and orientations of each tile, starting from a
given tile in a “standard position.” We prove that within certain restrictions, a
flexible tile assembly can simulate a rigid tile assembly, provided that the latter
is not “too large”; this size restriction arises from the different computational
powers of these two models. To prevent superpositions of tiles in rigid tile as-
sembly, we prevent the centers of two rigid tiles from being in the same position.
For simplicity, and following contemporary lines of research, as the pre-eminent
algorithmic DNA array assembly uses Wang or Wang-like tiles which align in a
plane, we restrict our attention to the two-dimensional case, although we should
remember that a main motivation for developing the flexible tile model was to
model three-dimensional structures.

2 The Flexible Tile Model

In this section we describe the basics of the flexible tile model that is used for
simulating the rigid tile model. For more information on this model, see [8].
As this paper deals with models of rigid tiles and of flexible tiles, we attach
the prefix “flex” to the words “tile,” “complex,” “pot,” etc., to distinguish the
flexible versions from the rigid tile versions. The port types are the same for
rigid and flexible tiles.

Definition 1. Fix a set H of port types; this can be regarded as a set of words
or codes that we use for tiles or flex tiles. Fix a function h �→ ĥ on H so that
h �= ĥ and ˆ̂

h = h for all h ∈ H.

A flex-tile has ports at the ends of its flex-arms, labeled by port types so that
two flex-arms can join at ports if and only if one of the arms terminates in a
port of type h and the other terminates in a port of type ĥ. For the rest of this
article, take H andˆto be fixed as above.

Definition 2. A flex-tile type is a function τ : H → N such that for any h ∈ H,
min{τ(h), τ(ĥ)} = 0. A flex-pot type over H is a set of flex-tile types on H.

Thus a flex-tile type is determined by the number of ports of each type the
tile has; note that a flex-tile type does not admit flex-arms with complementary
port types. And a flex-pot type is determined by the types of flex-tiles that are
present.

A flex-tile is a flexible tile of some flex-tile type; that type determines how
many ports of each port type the flex-tile has. A pot is a (presumably large) set
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of tiles, and is of some flex-pot type that determines what types of flex-tiles are
present. These flex-tiles can combine to form flex-complexes.

We represent flex-complexes with petri graphs. Recall that a petri graph is
a graph with two kinds of vertices, primary or “place” vertices and secondary
or “transition” vertices, the latter of which always has at most two incident
edges. We use a petri graph to represent a complex of flex-tiles, with flex-tiles
represented by primary (place) vertices, and junctions (between two ports on
ends of flex-arms) represented by secondary (transition) vertices.

Definition 3. Given a flex-pot typeP, a flex-complex over P is a tuple 〈T, J,Eλ〉,
(T ∩ J = ∅) such that:

– The tuple 〈T, J,E, 〉 is a connected petri graph, where:
• T is the set of primary vertices, which we call tile vertices, and
• J the set of secondary vertices of degree at most two, which we call

junction vertices, and
• E ⊆ {{t, j}: t ∈ T & j ∈ J} is the set of edges.

– The function λ assigns types to vertices and edges as follows:
• For each t ∈ T , λ(t) ∈ P, thus assigning flex-tile types to tile vertices,

and
• For each e ∈ E, λ(e) ∈ H, and
• For each t ∈ T and h ∈ H, there are exactly λ(t)(h) edges e incident to
t such that λ(e) = h, and

• For each j ∈ J , λ(j) = {λ(e): e ∈ E ∧ j ∈ e}.

We say that a junction vertex of degree one represents a free port. If a complex
has no free ports, call it complete.

The question is: given a flex-pot type, can one construct a complete flex-
complex, not too large, out of flex-tiles of types from that flex-pot? More pre-
cisely, from [8]:

Definition 4. We define Flexible Tile Assembly Polynomial time (or FTAP)
as the set of all queries Q that can be computed as follows. There exists a
polynomial-time algorithm which, given input I of size |I|, can enumerate the
flex-tile types of a flex-pot type P(I) and compute a (polynomial) bound b = b(|I|)
such that I ∈ Q if and only if there exists a complete flex-complex of at most b
flex-tiles over P(I).

Fix a polynomial f so that the polynomial time algorithm that converts I into a
flex-pot type is such that the flex-pot has no more than f(|I|) tiles, each with no
more than f(|I|) tentacles. It was shown in [8] that FTAP captures NPTIME.

3 The Rigid Tile Model

A rigid tile is centered at a single point in space, with rigid arms extending from
its center to ports at the ends of the arms. Thus each arm fixes the vector from
the center of the tile to the port at the end of the arm. The tile may be moved
by displacing (translating) the center (and thus the entire tile) by a vector; this
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motion can be obtained by applying the affine operator for that displacement.
The tile can also be rotated about its center through some angle about that cen-
tral point. This motion can be obtained by applying the corresponding rotation
operator for that angle. These operators, and their compositions, are isometries,
i.e., operators that describe strictly rigid motions. For brevity, we make three
simplifications:

– We consider assembly of two-dimensional tiles into complexes in the plane.
– We have a simple superposition restriction: we require that no two tiles have

their centers in the same position.
– We have a simple articulation restriction: two tiles can connect at a junction

of two arms only if they are attached at the tips, with the two arms aligned.

Relaxing the restrictions usually results in a more complicated but similar situa-
tion. For example, we would get the same results if we permitted tiles to articulate
via non-aligned arms – but the resulting nomenclature would be more involved.

Similarly aswith flex-tiles, rigid tiles have a center and arms that end with ports.
If a port type is denoted as h, its complement is ĥ. The set of port types is H . We
start by describing what a tile looks like in a “standard position.” It has several
arms, where an arm is described as a pair, a vector from the center to its tip, and
the type of the port at its tip. To move a tile one can imagine that one has rotated
it by an angle, and displaced it by a vector x; thus in Figure 2, a tile in standard
position has been rotated and displaced in order to attach to another tile.

2

R ψ

Rotate by y
Position: x

x  +Displace by x

Orientation: ψψ

τ 1
τ

y

Fig. 2. To connect, the tile in a standard position (left) is rotated by ψ and displaced
by a vector x. The arm originally pointing downwards is aligned with an arm of the
other tile (right); the two arms can attach as their ports are of complementary port
types (indicated by the shape). Here, Rψ is the rotation operator by angle ψ.

Thus the tile itself can be characterized by the vectors for its arms, and types
of the ports at the tips of those arms.

Definition 5. An arm type is a pair (y, h), where y is a vector and h is a port
type. A tile with k arms is a set τ = {(x, ψ), (y1, h1), . . . , (yk, hk)} where (x, ψ)
is called location of τand each (yi, hi) is an arm type such that no two arm
types have vectors y,y′ with y = αy′ for α > 0. A tile is in standard position if
(x, ψ) = (0, 0). A tile type is a tile in a standard position. A pot type is a set
of tile types.
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Note that in this case a tile can have ports of complementary types h and
ĥ. This is not permitted in flex-tiles as the two complementary ports would
(presumably) join, obviating their utility. But as two complementary ports on a
rigid tile cannot join (their arms being rigid), this restriction is omitted.

The location (x, ψ) of a tile τ says that the tile was moved from the standard
position, by rotating counterclockwise through angle ψ, and then translating by
vector x. If Rψ is the vector operation of the rotation, and the tile of type τ
is at location (x, ψ), then the port on an arm of type (y, h) is at the position
x +Rψy.

Example 1. Consider a pot type P = {τ} with one tile-type τ = {(0, 0), E =
(〈1, 0〉, h1),W = (〈−1, 0〉, ĥ1), N = (〈0, 1〉, h2), S = (〈0,−1〉, ĥ2)}. Here we name
the arms of τ : E,W,N, S. Then tiles from P assemble into an infinite grid as in
Figure 3(a), and if one tile is in standard position, with its center at the origin,
the other tiles can be taken at positions (2i, 2j), where i and j are integers.

In Example 1, if we had an infinite complete complex generated from a tile in
standard position, then each of the other tiles is of the same type, but displaced
by a vector 〈2i, 2j〉. Note that a tile rotated by 90◦, 180◦, or 270◦ will not fit in
the grid; thus all tiles are rotated by integral multiples of 360◦.

Example 2. Suppose that we have two kinds of tiles, both consisting of two arms
of the same length, where the angle between the arms is 240◦. The ports of the
arms within one tile are the same: in one tile type, both ports are of type h, while
for the other of tile type, both ports are of port type ĥ. When they assemble,
they alternate between one type of tile and the other, with all tiles of the second
type rotated 120◦ with respect to the second as in Figure 3(b).

The complete complex in Example 2(b) has the form of a hexagon. We fix the
standard positions for these tiles. Let a = 〈12 ,

√
3

2 〉 and b = 〈12 ,−
√

3
2 〉. Then the

two tile types are: τ = {(0, 0), a = (a, h), b = (b, h)} and τ ′ = {(0, 0), a′ =
(−b, ĥ), b′ = (−a, ĥ)}. The arms of τ are denoted a and b and the arms of τ ′ are
a′ and b′. Then if the tile at the left-most of the hexagon (indicated in Figure
3(b) as t0) is in standard position, with its center at the origin, since the sides
of the hexagon are of length 2 the two tiles at the bottom have their centers
at (1,−

√
3) and (3,−

√
3) respectively. Hence the “complete complex” will have

“tile vertices” at positions (0, 0), (1,−
√

3), (3,−
√

3), (4, 0), (3,
√

3), and (1,
√

3).
The (rigid) complex structure with a base tile t0 is defined as follows.

Definition 6. Given a pot type P, a complex over P is a tuple 〈T, t0, J, E, λ〉,
(T ∩ J = ∅) such that:

– The tuple 〈T, J,E〉 is a connected petri graph, where:
• T is the set of primary vertices, called tile vertices,
• J is the set of secondary vertices of degree at most 2, called junction vertices,
• E ⊆ {{t, j}: t ∈ T & j ∈ J} is the set of edges.

– The function λ is a labeling of the vertices and the edges:
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Fig. 3. Two examples. (a) Square tiles forming a grid, and (b) angled tiles forming a
hexagon. The port types on the tips of the arms of the angled types are represented
by solid (for type ĥ) versus unfilled (for port type h) arrows.

• For each t ∈ T , let λ(t) = (x, ϕ, τ), τ ∈ P and (x, ϕ) is a location. There
is exactly one edge incident to t for each arm type in τ . [each tile vertex
corresponds to a tile type; the label indicates the location and the tile type
of the vertex]

• For each e = {t, j} ∈ E, if λ(t) = (x, ϕ, τ) then λ(e) ∈ τ
• For each j ∈ J , if j is incident to two edges e = {t, j} and e′ = {t′, j}

with labels λ(t) = (x, ϕ, τ), λ(t′) = (x′, ϕ′, τ ′), λ(e) = (y, h) and λ(e′) =
(y′, h′) then h′ = ĥ x′ − x = Rϕy − Rϕ′y′ [the arms form two edges
connecting the tile vertices via the junction vertex j] and for some α < 0,
Rϕy = αRϕ′y′ [the arms are antiparallel, and so aligned].

– The tile t0 is called the base tile and it has label λ(t0) = (0, 0, τ), where
τ ∈ P

Similarly as for flex-tiles, the junction vertices of a complex with degree one
are called free and the junction vertices with degree two are complete. A complex
is complete if all junction vertices are complete.
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In Example 1, the infinite grid has, for each t ∈ T , λ(t) = (〈2i, 2j〉, 0, τ),
where i and j are integers and τ is the sole tile type. The labels of the edges are
N,S,W or E as defined through τ .

Two complexes C and C′ over the same pot type are isomorphic if there is a
one to one correspondence T → T ′, J → J ′, E → E′ that preserves the labeling
of the tile vertices and the edges.

To each complex we associate a set of words in the following way. Given
a pot type P with tile types τ1, . . . , τk, for each tile type τi denote the arms
ai1, . . . , aksk

(i = 1, . . . , k) and put all these arm types into a set Ai. Consider
the alphabet Σ = ΣP = ∪k

i=1Ai. Let C = 〈T, t0, J, E, λ〉 be a complex over P.
Then for each edge e ∈ E, λ(e), the label of e, is in Σ. Consider the labels of
all paths in C that start at vertex t0. This set of words in fact uniquely defines
C. Denote with L(C) the set of all words that are labels of paths in C and start
at t0.

Theorem 1. Let C and C′ be two complexes over a pot type P, and let t0 and t′0
be base tiles of the same type in C and C′, respectively. Suppose that each complex
has at most n tile vertices. Then C is isomorphic to C′ through an isomorphism
that preserves vertex and edge labels if and only if L(C)≤2(n−1) = L(C′)≤2(n−1).

Proof. (sketch) Note that a path that visits n tile vertices in a complex, visits
n − 1 junction vertices and hence traverses 2(n − 1) edges. Since a complex is
connected, the set of all paths of length 2(n − 1) includes all paths such that
the n tile vertices are visited at least once. Let C with base tile t0 and C′ with
base tile t′0 be two complexes with n vertices over the same pot type P. The
labels of the edges belong to the same alphabet ΣP. We show that C and C′

contain identically labeled arrays of tiles with isomorphic displacements. We
proceed by induction on n. If n = 0 then by assumption t0 and t′0 are tiles of the
same type. If C and C′ contain n+ 1 tile vertices, let t �= t0 be a boundary tile
vertex in C. Consider C̄ a complex obtained from C with t removed. Consider
K = L(C̄)≤2(n−1). By assumption K ⊆ L(C′) and hence it defines a subcomplex
C̄′ of C′ with n tile vertices isomorphic to C̄. Extension of words in K by two
symbols that are labels of paths reaching t are in both L(C) and L(C′) and hence
define the extension isomorphism map from C to C′.

In Example 2, the hexagon is uniquely defined with Pref(w,wR) for w =
aa′b′baa′b′baa′b′b = (aa′b′b)3 where Pref indicates the set of all prefixes. Note
that subwords aa, ab, ba, bb are forbidden in any complex over this pot, as arms
denoted a and b have the same port h and cannot meet. Similarly with arms
a′ and b′. Thus in every complex over P the words alternate between primed
symbols and non primed symbols.

In Example 1 the complex is potentially infinite and there is no complete
complex over any finite pot. The four-by-two grid indicated in Figure 3(a) can
be defined with the set Pref(w) where w is a label of a path starting from
the bottom left corner and having at most length 14 = 2(8 − 1) (for ex. w =
EWEWEWNSWEWEWE).
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The rigid tile model for computation is formalized as follows.

Definition 7. (Rigid tile computation) For a query Q construct a set of tile
types P and a polynomial time algorithm such that for any input I, the algorithm
produces a (description of) a partial complex – a seed s(I) encoding the input I.
The query Q is true if and only if the seed extends to a complete complex.

It is known (in case of DNA tile assembly see [15]) that even in the simple case of
Wang tiles (four armed tiles in the plane) the queries computable by the above
procedure are precisely the classically computable queries. In the next section
we describe how flex-tile assemblies can simulate the rigid tile assemblies, given
that the rigid tile assemblies generate complexes within a certain bound.

4 The Simulation

Most contemporary DNA assembly concerns algorithmic assembly of rigid Wang
tiles (for ex. [10,2,6]) that are designed as double or triple cross-over DNA mole-
cules. These simple square-shaped tiles define models capable of universal com-
putation and their mathematical description within the above described concept
is straightforward. In this section we restrict attention to assemblies (of poly-
nomial size) of Wang tiles and show that such assemblies can be simulated as
assemblies of flex-tiles. Wang tiles are unit squares in the plane with colored
sides such that same colored sides can be aligned. Wang tiles are not allowed
to rotate, and can only translate. Each type of Wang tile comes with arbitrary
large number of copies of itself. It is well known that the question of whether a
finite set of Wang tile types can be aligned such that they tile the whole plane is
undecidable. and it is precisely from this fact that their universal computational
power can be proven.

Each Wang tile can be represented as a four-armed rigid tile (North, South,
East, West). As rotations are not allowed, East can connect only with West and
South only with North.

A Wang tile with left color l, right color r, top color t and bottom color b is
represented with a rigid tile type

τ = {(0, 0), (〈−1, 0〉, lW ), (〈1, 0〉, rE), (〈0, 1〉, tN), (〈0,−1〉, bS)}

where Ŝ = N and Ŵ = E.
In order to obtain complete complexes, additional border tiles are needed.

To form boundaries, we allow Wang tiles with one or two (adjacent) uncolored
sides, and require that Wang tiles do not join across uncolored sides. This proviso
corresponds to adding eight types of rigid tiles, as in Figure 5.

Theorem 2. Given a pot type of rigid Wang tiles Pr, there is a polynomial time
algorithm and a polynomial q such that given an input seed of rigid tiles with n
tiles, the algorithm can construct a flex-pot type Pf with the property that Pf

admits a complete complex with p(n) = (2q(n)− 1)2 flex-tile vertices if and only
if the seed extends to a complete complex over Pr with at most q(n) tile vertices.
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(a) Wang tiles (b) Square tile representation

Fig. 4. (a) Wang tiles assembly, (b) representing Wang tile assembly using four armed
rigid tiles similar as in Example 1

N N N

N

N S

S S

S

S

E E

E

E

E

W

W W

W

W

(a) Side boundary tiles (b) Corner boundary tiles

Fig. 5. The boundary tiles

Proof. (sketch) As flexible tiles do not follow an underlying geometry and their
connections may result in a complex that lives in the 3-dimensional space instead
of the plane like Wang tiles, the flex-tiles should be indexed with their intended
positions, and ports encoded such that only flex-tiles labeled with adjacent po-
sitions can join. We use the technique introduced in [8]: index the positions of
the flex-tiles, and order the indices so that no two tiles of the same position
index can appear in the same “sufficiently small” flex-complex. Note that the
shape of the rigid complete complex might not be rectangular. We enclose a
flex-tile representation of this shape into a rectangular grid of no more than
(2q(n)− 1)× (2q(n)− 1) flex-tiles; see Figure 6.

Since we are only interested in extending the seed of n tiles to a rigid complex
of at most q(n) tiles, if we take one of the tiles in the seed to be in the standard
position, then as the resulting complex is connected, every other tile in the ulti-
mate complex must be at a position (2i, 2j) in which 2i + 2j < 2q(n). Thus we
order the positions to that every tile of the ultimate complex will be at a position
enumerated during the first p(n) = 4q(n)2 − 4q(n)− 1 positions as in Figure 6.
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rectangular enclosure

(0, 0) (2, 0)

(2, 2)(0, 2)(−2, 2)

(−2, 0)

(−2, −2) (0, −2) (2, −2) (4, −2)

(4, 0)

(4, 2)

shape of the rigid complex

enumeration of the rigid tiles

Fig. 6. The ordering of positions

Notice that in Figure 6, succ(0, 0) = (2, 0), succ2(0, 0) = (2, 2), succ3(0, 0) =
(0, 2), and so on, and all positions within q(n) displacements from the origin are
among (0, 0), succ(0, 0), succ2(0, 0), ..., succp(n)−1(0, 0). Thus any complex of at
most q(n) Wang tiles, in which one of those tiles is in standard position, will
have all of its tiles at positions among (0, 0), ..., succp(n)−1(0, 0).

The flex-tile types for the flex-pot that simulates the given (rigid tile) pot
are constructed as follows. There are two kinds of flex-tile types: those that
represent (rigid) tiles in particular positions, and those that represent unoccupied
positions, positions in the rectangular enclosure outside the shape of the complex.

Consider flex-tile types representing (rigid) tile types of tiles at particular
positions, both inside and outside the seed. For brevity, we explain a flex-tile
type representing a typical (four-armed) square tile at a particular position,
with particular port types. The cases of the eight (kinds of) boundary tiles can
be described similarly. As in Figure 7(a), suppose that a four-armed tile is to
be placed at (2i, 2j) within the rigid complex. This tile is simulated with a flex-
tile of 6 flex-arms as in Figure 7(b). Four of the arms encode the port types
the position (2i, 2j); the additional two arms follow the spiral ordering of the
positions; this spiral is used to count the number of rigid tiles represented in the
shape on the flex-tile complex, as follows.

As the “shape” of the flex-complex representation of the rigid tile complex
(see Figure 6) takes up at most q(n) flex-tiles, the flex-complex will include
at least p(n) − q(n) “blank” flex-tiles, representing unoccupied positions. In
the flex-complex, there will be exactly one flex-tile for each position up to
succp(n)−1(0, 0). As the rigid tile complex being simulated has at most q(n) tiles,
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succ(2i, 2j)

S[h   ,(2i 2j)      (2i,2j−2)]

[h   ,(2i, 2j)     (2i, 2j+2)]N

[h  ,(2i,2j)      (2i+2,2j)]E

[h   ,(2i,2j)     (2i−2,2j)] 
W

h, h E

h, h

h, h

h, h

N

S

W

pred(2i, 2j)

Fig. 7. Simulating rigid tiles. The rigid tile at left is at position (2i, 2j), so that its four
neighbors are at (2i, 2j +2), (2i+2, 2j), (2i, 2j −2), and (2i−2, 2j). The flex-tile which
simulates this rigid tile has those four articulating positions built into its port codes. It
will only join with flex tiles labeled with those positions. Here “(i, j) → (i′, j′)” means
that the port is on a flex-arm of a flex-tile presumably at (i, j), and it wants to join
to a port on a flex-arm of a flex-tile presumably at (i′, j′). In addition, the two extra
arms connect to arms for flex tiles at pred(2i, 2j) and succ(2i, 2j).

they occur within the rectangle of size (2q(n) − 1) × (2q(n) − 1). The flex-tiles
representing unoccupied positions occur in the parts outside the “shape” of the
rigid tile complex. Such a “blank” flex-tile for the position (2i, 2j) has only two
flex-arms, one to connect to the spiralling arm of the flex-tile at pred(2i, 2j), and
the other to the spiralling arm of the flex-tile at succ(2i, 2j).

Thus starting at the flex-tile labeled with the base tile’s position (0, 0), the spi-
ral traverses the entire flex-complex, and the (labels on the) successive spiraling
arms count the number of flex-tiles representing rigid tiles in the “shape,” as op-
posed to blank flex-tiles representing unoccupied positions outside the “shape.”
Thus, if all possible final p(n)th flex-tile types for the position succp(n)−1(0, 0)
have a single (predecessor) spiral arm that connects only if the count is at most
q(n), the flex-complex can be completed if and only if the (rigid tile) complex
represented has at most q(n) tiles.

5 Excelsior

The rigid tile model here is intended to describe finished structures, and this pa-
per being a first iteration, we are not concerned with the various kinds, strengths,
and properties of bonds. Our concern is geometric, for while most extant DNA
assembly has relied on a limited array of (largely two-dimensional) tiles, other
fields of chemical assembly has explored problems involving a variety of two and
three-dimensional ... tiles ... (or, as a chemist might prefer, “molecular building
blocks” (MBBs): see, e.g., [17], [3], [4], and especially [1] on “crystal engineer-
ing”). (Hence the motivation for the geometric generality of our model: there is
already a large range of building block shapes to accomodate.)

But in this project, our concern is primarily computational: we have two
related models of computation, and we have a class of queries of the form “given
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building blocks of such-and-such form, a completed complex exists.” We have
shown that any such query on the two-dimensional rigid tile model can (within
polynomial restrictions) have its assembly modeled by the flexible tile model.
The converse holds as well: given any such query, the flexible tile assembly can
be simulated by a rigid tile assembly [9].

Acknowledgement. This work has been supported in part by NSF grants CCF
#0432009 and CCF#0523928.
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Abstract. Catalytic P systems is one of the basic classes of P systems.
The number of catalysts required for optimal universality results (both
in pure catalytic systems and catalytic systems) has been a problem
of extensive research [3], [5], [6], [7], [12]. The differences that can give
universality/non-universality are very small in these systems, and find-
ing this borderline is one of the ‘jewel’ problems in P systems [12]. In
this paper, we try to figure out this borderline and have obtained some
interesting results. We have proved that with 2 catalysts, if λ-rules are
not used, then universality cannot be obtained. We also consider two
restricted variants of pure catalytic systems and prove that they are also
not universal. Finally, we look at mobile catalytic systems and solve two
open problems.

1 Introduction

P systems using catalysts has come a very long way [3], [5], [6], [7], [14], [15].
Initially, catalysts were introduced in P systems as a natural variant. It was
shown that to obtain universality, catalysts can be used instead of using prior-
ities. The interest has since shifted to finding the minimal number of catalysts
required for universality. Several papers [3], [4], [5], [6], [14], [15] have looked at
this problem as well as restricted versions of catalytic systems, and systems with
different notions of acceptance while using catalysts. Some of these include P
systems with catalysts using an extended alphabet [3], pure catalytic P systems,
deterministic P systems, [5], [6], P systems with catalysts that function like P
automata [3] and P systems with mobile catalysts [7]. All these different versions
were introduced in the search for universality results with minimal number of
catalysts. Due to the vast amount of work devoted towards this basic problem,
this has been called one of the jewel problems in membrane computing [12].

We quickly recall some of the most recent results in this direction. It has
been shown in [3] that (i) pure catalytic systems with three catalysts and two
membranes (acceptance by halting) and using λ-rules are universal, (ii) using
a terminal alphabet, 3 catalysts (using λ-rules) and one membrane give univer-
sality. However, it can be easily seen that with 3 catalysts, 2 membranes, and
allowing only λ-free rules, we can still achieve computational completeness. A
small modification [8] of Corollary 8 [3] would do this. Thus, the power of 3 cat-
alysts with one membrane in the non-extended case and the power of 2 catalysts

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 152–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with one/two membranes is still open. Similarly, in the case of mobile catalysts,
it is known [7] that if rules of the kind a → v are used in conjunction with
catalytic rules, then universality can be obtained with (i) two membranes and
two mobile catalysts and (ii) one mobile catalyst and three membranes.

In this paper, we make an effort to solve some of the issues with respect to
the number of catalysts required. We have identified some restrictions on the
number of catalysts, number of membranes, as well as the kind of rules used,
to obtain classes of P systems that are strictly less than RE in power. We have
also obtained an optimal universality result for P systems with mobile catalysts.
This paper is organized as follows: Section 2 is devoted towards prerequisites,
Section 3 deals with two results on pure catalytic P systems, Section 4 is on
mobile catalytic P systems.

2 Some Prerequisites

We refer to [13] for the elements of formal language theory we use here. We list
a few notions and notations: N denotes the set of natural numbers; V denotes
a finite alphabet; V ∗ is the is the free monoid generated by V under the op-
eration of concatenation and the empty string denoted by λ, as unit element;
by NCF,NRCM(M,CF, ∅), NMAT λ,NRCp,f ,NCS and NRE we denote the
family of context-free sets, random-context matrix sets, sets of numbers com-
puted by matrix grammars without appearance checking, random-context sets,
context sensitive sets, and recursively enumerable sets of natural numbers, re-
spectively. These can also be looked at as the family of sets of numbers recognized
by these languages. It is known that NCF ⊆NRCp,f ⊆ NCS ⊂NRE and that
NRCM(M,CF, ∅) = NMAT λ ⊂ NRE. We will be using the following well
known definitions [1] in later sections of the paper.

– The left quotient of a language L by a letter a is given by
∂l

a(L) = {x | ax ∈ L}.
– Matrix Grammars: A matrix grammar is a quadruple G = (N,T,M, S)

whereN,T are sets of non-terminals and terminals respectively, S is the start
symbol, and M is a finite set of matrices of the form (r1, . . . , rn), n ≥ 1, with
context-free rewriting rules ri : (αi → βi, αi ∈ N , βi ∈ (N ∪ T )∗. For two
strings x, y we say that x ⇒ y iff there are strings x0, . . . , xm and a matrix
(r1, . . . , rn) ∈ M such that x0 = x, xm = y, and xi−1 = x′i−1αix

′′
i−1, xi =

x′i−1βix
′′
i−1 for some x′i−1, x

′′
i−1 ∈ (N ∪ T )∗, for all 0 ≤ i ≤ n − 1. In other

words, a direct derivation in the matrix grammar G corresponds to applying
the rules of a matrix, in order. We denote by MAT λ the families of languages
generated by matrix grammars (allowing λ-rules).

– Random Context Grammars: A random context grammar is a construct G =
(N,T, S,R) where N is the set of non-terminals, T is the set of terminals, S
is the start symbol and R is a set of rules of the form p : (A → w,E1, E2)
where A→ w is a context-free production over N ∪T and E1, E2 are subsets
ofN . Then, p can be applied to a string x ∈ (N∪T )∗ only if x = x1Ax2, E1 ⊆
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alph(x1x2), andE2∩alph(x1x2) = ∅. alph(x1x2) stands for the set of symbols
occurring in x1x2. If E1 or E2 is the empty set, then no condition is imposed
by E1 or E2 respectively. E1 is said to be permitting and E2 is said to be
the set of forbidding context conditions of p. We denote by RCp,f the family
of languages generated by random context grammars with permitting and
forbidding contexts and λ-free rules. If in all rules, the set E1 is empty, we
denote the family of languages generated by RCf ; similarly, if in all rules,
the set E2 is empty, the resulting family of languages is denoted by RCp.

– Random Context Matrix Grammars: A random context grammar is a con-
struct G = (N,T,M, S, F ) where N,T, S are as in a usual matrix grammar
and M is a finite set of triples ((A1 → x1, A2 → x2, . . . , An → xn), Q,R)
where Ai → xi are context-free rules, 1 ≤ i ≤ n, Q,R ⊆ N , Q ∩ R = ∅.
A matrix can be applied to a string x = x1X1x2X2 . . . Xlxl+1 in order to
rewrite effectively the symbols X1, . . . , Xl only if x1, . . . xl+1 contains all
symbols of Q and no symbols of R. We denote by RCM(M,β,max(α, γ))
the family of languages generated by random context matrix grammars
G = (N,T, S,M,F ) with rules of type β, β ∈ {CF,CF − λ}, with arbi-
trary F if γ = ac, or with empty F if γ is empty, with arbitrary R in
((r1, . . . , rn), Q,R) ∈ M if α = ac and with empty α if no forbidding con-
texts are involved. max (α, γ) = ac if atleast one of α, γ is ac. Thus, if no
appearance checking is used, and if no forbidding contexts are used, we have
the family RCM(M,β, ∅). It is known [1] that RCM(M,CF, ∅) = MAT λ,
and RCM(M,CF, ac) = MAT λ

ac = RE.

For basic elements of membrane computing we refer to [11]; for the state-
of-the art of the domain, the reader may consult the bibliography from the
web address http://psystems.disco.unimib.it. For proving computational
universality, we use the concept of Minsky’s register machine [9].

2.1 Register Machines

The universality proof in Section 4 is based on the concept of Minsky’s register
machine [9]. Such a machine runs a program consisting of numbered instructions
of several simple types. Several variants of register machines with different num-
ber of registers and different instruction sets were shown to be computationally
universal.

An n-register machine is a construct M = (n, P, i, h) , where: (i) n is the num-
ber of registers, (ii) P is a set of labeled instructions of the form j : (op (r) , k, l),
where op (r) is an operation on register r of M , j, k, l are labels from the set
Lab (M) (which numbers the instructions in a one-to-one manner), (iii) i is the
initial label, and (iv) h is the final label.
The machine is capable of the following instructions:

(add(r), k, l): Add one to the contents of register r and proceed to instruction
k or to instruction l; in the deterministic variants usually considered in the
literature we demand k = l.
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(sub(r), k, l): If register r is not empty, then subtract one from its contents
and go to instruction k, otherwise proceed to instruction l.
halt: Stop the machine. This additional instruction can only be assigned to
the final label h.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : Nα → Nβ; starting with (n1, . . . , nα) ∈
Nα in registers 1 to α, M has computed f (n1, . . . , nα) = (r1, . . . , rβ) if it halts
in the final label E with registers 1 to β containing r1 to rβ . If the final label
cannot be reached, then f (n1, . . . , nα) remains undefined.

A deterministic m-register machine can also analyze an input (n1, . . . , nα) ∈
Nα

0 in registers 1 to α, which is recognized if the register machine finally stops
by the halt instruction with all its registers being empty. If the machine does
not halt, the analysis was not successful.

In their non-deterministic variant, n-register machines can compute any re-
cursively enumerable set of non-negative integers (or of vectors of non-negative
integers). Starting with all registers being empty, we consider a computation of
the n-register machine to be successful, if it halts with the result being contained
in the first (β) register(s) and with all other registers being empty.

3 Pure Catalytic P Systems

In this section, we introduce briefly the basic system under consideration. A
pure catalytic P system of degree m is a construct Π = (V,C, μ, w1, . . . , wm,
R1, . . . , Rm, i0) where (i)V is an alphabet, (ii)C ⊆ V is the set of catalysts,
(iii) μ is a membrane structure consisting of m membranes, (iv)wi, 1 ≤ i ≤ m
are multisets of objects associated with region i of μ, (v) Ri are finite sets
of rules over V of the form ca → cv, c ∈ C, a ∈ V/C, v is a string from
((V/C) × {here, out, in})∗ associated with the regions i of μ, and (vi) i0 is a
number between 1 and m representing the output membrane of Π .

The rules are applied in a non-deterministic maximally parallel way, as usual
in P systems. Thus, in each step, whenever a rule involving a catalyst is applica-
ble, it should be applied. The number of objects in the output membrane at the
end of a halting configuration is the output of Π . The class of all sets of numbers
computable by pure catalytic P systems of degree ≤ m, using ≤ k catalysts is
denoted by NPCλ

m(catk). When only λ-free rules are used, (rules are of the form
ca→ cv, v ∈ ((V/C)×{here, out, in})+) the family is denoted by NPCm(catk).

In the case of one-membrane systems, rules of the kind ca → c(v, out) is
equivalent to ca → c, since the v is lost outside the membrane. Thus, when we
consider λ-free one membrane systems, we assume that we do not have rules (i)
ca → cv where v consists of symbols (w, out), and (ii) rules ca → c. However,
in the case of systems with two or more membranes, when we say we have λ-
free rules, we allow in all membranes other than the skin, (i) all kinds of rules
ca → cw, where w ∈ (V/C × {here, out, in})+, and, in the skin membrane, (ii)
all rules other than ca→ cw such that w = λ or w contains a (v, out).
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In the following, we show that 2 catalysts and one membrane cannot charac-
terize RE when λ-free rules are used.

Theorem 1. NPC1(cat2) ⊆NRCp,f ⊂ NRE.

Proof. Consider the pure catalytic P system Π = (V,C, [1]1, w,R, 1), where
C = {c1, c2}. As discussed above, all rules of R are of the form ca→ c(w, here),
a ∈ V,w ∈ V +. Let Un, U1, U2, Ub ⊆ V be subsets of V as defined below:

Un = {a ∈ V | � rules c1a→ c1v ∧ � rules c2a→ c2w},
U1 = {a ∈ V | ∃ rules c1a→ c1v ∧ � rules c2a→ c2w},
U2 = {a ∈ V | � rules c1a→ c1w ∧ ∃ rules c2a→ c2v},
Ub = {a ∈ V | ∃ rules c1a→ c1v ∧ ∃ rules c2a→ c2w}

Clearly, V = Un ∪ U1 ∪ U2 ∪ Ub. Let us construct a random context grammar
G = (N,T, S, P ) where N = V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ V̂ ∪ {O,F,E} with V ′ =
{a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V }, V ′′′ = {a′′′ | a ∈ V } and V̂ = {â | a ∈ V }.
The set T of terminals is T = {H} ∪ V̄ , where V̄ = {ā | a ∈ V }. We assume
F,O,E,H /∈ V . The set of productions P is as follows:

1. (S → Ow, ∅, ∅),
2. (O → F, ∅, V ′ ∪ V ′′ ∪ V ′′′ ∪ V̂ ),
3. (a→ v′, {F}, {O,E} ∪ V ′), if c1a→ c1v ∈ R,
4. (a→ v′′, {F}, {O,E} ∪ V ′′), if c2a→ c2v ∈ R,
5. (a→ a′′′, {F} ∪ {e′}, {O,E}), e ∈ V, a ∈ U1,

6. (a→ a′′′, {F} ∪ {e′′}, {O,E}), e ∈ V, a ∈ U2,

7. (a→ v′′, {F} ∪ {e′}, {O,E} ∪ V ′′), e ∈ V, a ∈ Ub, and c2a→ c2v ∈ R,
8. (a→ v′, {F} ∪ {e′′}, {O,E} ∪ V ′), e ∈ V, a ∈ Ub, and c1a→ c1v ∈ R,
9. (a→ a′′′, {F} ∪ {e′, f ′′}, {O,E}), e, f ∈ V, a ∈ Ub,

10. (a→ â, {F}, {O,E}), a ∈ Un,

11. (F → O, ∅, V ),
12. (a′ → a, {O}, {F,E}), 13. (a′′ → a, {O}, {F,E}),
14. (a′′′ → a, {O}, {F,E}), 15. (â→ a, {O}, {F,E}),
16. (F → E, ∅, V ∪ V ′ ∪ V ′′ ∪ V ′′′),
17. (â→ ā, {E}, V ∪ V ′ ∪ V ′′ ∪ V ′′′), a ∈ V,
18. (E → H, ∅, V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ V̂ ).

We start with rule 1, rewriting S with Ow. The only applicable rule now is rule
2, which replaces O by F , provided the only other symbols in the string are over
V . This being the case in Ow, we obtain Fw. In the presence of F , we simulate
a computation step of Π . Thus, we are supposed to use a rule corresponding to
c1 if applicable, and a rule of c2 if applicable. Rule 3 tells us how to simulate a
c1 rule. The symbol a is replaced by v′ in the presence of F , provided there are
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already no other symbols of V ′. This ensures that we apply any c1 rule atmost
once. Similarly, a c2 rule is simulated by replacing a with v′′. The actual issue
is that we have to know somehow when the simulation of a computation step is
over. For this, we replace all other symbols in the string with either a′′′ or â, so
that we obtain a string with no symbols of V .

We will now look into the finer details of the simulation. Rule 5 says that a
symbol a ∈ U1 can be replaced by a′′′ (thereby not simulating the rule c1a→ c1v)
only if there is already some e′ in the string (which means that already some
c1 rule has been applied). This way, all symbols of U1 can be replaced with a′′′

if there is already some e′. However, if there are no e′’s in the string, then rule
5 cannot be applied, then we will have to use rule 3. Similar is the case of rule
6. Now let us look at rules 7,8,9. These deal with symbols a ∈ Ub. Now, we can
replace a with a′′′ (thereby choosing not to simulate either of the rules c1a→ c1v
and c2a → c2v) only if we already find two symbols e′, f ′′ in the given string.
If we find only an e′, and do not find any f ′′, then it means that no c2 rule has
been simulated, and so, we cannot replace a with a′′′. This is so, since the rest
of the symbols might be belonging to U1 ∪ Un. Thus, we have to replace a with
v′′. The case of rule 8 is similar wherein we check if any c1 rule has already been
simulated or not. Thus, symbols a ∈ U1, U2, Ub are replaced with a′′′ only if there
already exist some e′ or an f ′′ or both e′, f ′′ in the string respectively. Symbols
of Un are simply replaced with â since anyway they do not have any rules.

Thus, at the end of a simulation step, we obtain a string over {F} ∪ (V ′ ∪
V ′′∪ V̂ ∪V ′′′)∗. Now, we need to replace all symbols over V ′∪V ′′∪ V̂ ∪V ′′′ with
symbols over V to start the next simulation. This is done by first replacing F
by O (rule 11). We can stop the simulation when we obtain a string over FV̂ ∗.
This means that no rules are applicable to any of the symbols. In this case, we
replace F with E and stop. Clearly, the symbols â ∈ V̂ in the string EV̂ ∗ are
those which will be in the membrane at the end of a halting computation. All
that remains to be done now is to replace all â ∈ V̂ by ā in the presence of E.
Once this is done, and all symbols are replaced, we replace E by H , obtaining a
string HV̄ ∗.

However, we do not require the symbol H . Since RCp,f is closed under left
quotient by letters [2], we can remove H and still obtain the remaining string to
be in RCp,f . Hence, N1PC1(cat2) ⊆ N1(∂l

H(L)), L ∈ RCp,f and H is a letter.
Thus, N1PC1(cat2) ⊆ N1RCp,f . �


Note: The above result can also be proved using classical results in complexity
theory [10].

Corollary 1. N1PC∗(cat2) ⊆ N1PC1(cat2) ⊆ N1RCp,f ⊂N1RE.

Proof. Given a system Π with 2 membranes [1[2]2]1, if we have both catalysts
in the same region, then there cannot be any rules in the other region. Thus,
these systems would be equivalent to one membrane systems with two catalysts.

Consider now the case when c1 is in membrane 1 and c2 is in membrane 2. In
this case, we can construct a one membrane systemΠ ′ such that N(Π) ⊆N(Π ′).
This is based on the following idea: Let Π = (V,C, [1[2]2]1, x, y, R1, R2, i0). Let
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U1, U2 ⊆ V be the subset of symbols which have no applicable rules in R1, R2
respectively.

Construct Π ′ = (V1 ∪ V2, C, [1]1, x1y2, R, 1) where x1 = h1(x), y2 = h2(y),
h1 : V → V1, h2 : V → V2 such that hi(a) = ai, i ∈ {1, 2}. Thus the objects
in Π ′ are indexed by their original positions in Π . Rules of R1 are applied to
objects indexed with 1, and rules of R2 are applied to objects indexed with 2.
A rule c2a→ c2(w, here)(y, out) of R2 is used as c2a2 → c2w2y1 in R. Similarly,
a rule c1a → c1(w, here)(y, out)(z, in) of R1 is used as c1a1 → c1w1z2, since y
is lost anyway. This way, we have in Π ′, all rules modified with respect to the
indices, and Π ′ halts when Π halts. To obtain the same output as Π , we add
rules ciai → ci, i �= i0, and a ∈ Ui.

Finally, if we consider systems with 3 or more membranes, and 2 catalysts,
then again, regions where the catalysts are not placed will be useless, thereby
reducing these systems to one membrane systems Π ′. �

Next, we consider some variants of pure catalytic P systems. Let Π = (V,C, μ,
w1, . . . , wm, R1, . . . , Rm, i0) be a system with n catalysts C = {c1, . . . , cn}. Let
Ci ⊆ V be defined as Ci = {a ∈ V | ∃cia→ ciw ∈ Rj , some j}. We consider two
restricted systems here : (i) those in which the rules are only of the form cia→
ciw, such that alph(w)∩Cj = ∅, j �= i, and (ii) those in which a computation can
proceed until every catalyst ci has an applicable rule in every step. The system
halts when there is some catalyst with no applicable rule.

Systems of type (i) are such that the symbols w produced by a catalytic rule
cia → ciw can be used if at all, only by the catalyst ci. Further, for systems of
type (i), the moment a catalyst ci has no more applicable rules, we can conclude
that ci will be idle forever, since no other cj can create symbols which can be
processed by ci. This is not the case in usual pure catalytic systems, since a
catalyst ci may be idle for a few steps, and may again start working since new
symbols which can be processed by ci have been created by other cj ’s.

Systems of type (ii) on the other hand, are those in which no catalyst is
allowed to remain idle. Thus, starting from the initial configuration, all catalysts
start working, and if there is a configuration where some catalyst has no rule
to be used, then the system halts. The computation proceeds in both systems
the same way as for pure catalytic systems, and the number of objects in the
output membrane at the end of a halting configuration is the result. Let us
denote the class of all sets of numbers computable by systems of types (i), (ii)
using atmost k membranes and n catalysts by NPICλ

k (catn) (or NPICλ
k (catn)

in case of λ-free rules) and NPPCλ
k (catn) (or NPPCλ

k (catn) in case of λ-free
rules) respectively. The I in NPICλ

k (catn) stands for the independence of
catalysts in performing rules (ci is not dependent on the symbols produced by
some cj) and the P in NPPCλ

k (catn) stands for the simultaneous (parallel)
action of all catalysts in all steps.

Theorem 2. 1. NPICλ
1 (cat2) ⊆ NMAT λ ⊂ NRE.

2. NPPCλ
1 (cat2) ⊆NMAT λ ⊂NRE.

Proof. Consider a pure catalytic P system of type (i): Π = (V,C, [1]1, w
′, R, 1)

with C = {c1, c2}. Let Ui ⊆ V be the set of all symbols of V which do not
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have any rules corresponding to ci, i ∈ {1, 2}. Let there be n rules of the kind
c1a→ c1v and m rules of the kind c2b→ c2w for a, b ∈ V .

We construct the matrix grammarG = (N,T, S,M) where N = V/(U1∩U2)∪
J, J = {O,O1, O2, H1, H2}, T = U1 ∩ U2, and J � V . The matrices are given
by:

1. (S → Xw′), X ∈ {O,H1, H2},
2. (a→ w,O → O1), if c1a→ c1w,

3. (b→ v,O1 → O), if c2b→ c2v,

4. (a→ w,O → H1), if c1a→ c1w,

5. (b→ v,O1 → H2), if c2b→ c2v,

6. (b→ v,H1 → H1), if c2b→ c2v,

7. (a→ w,H2 → H2)), if c1a→ c1w,

8. (Hi → λ), i ∈ {1, 2}.

To start with, we had w′ in membrane 1. Rule 1 is used, obtaining Xw′. Let us
first look at the case when X = O. In this case, we assume that there is atleast
one symbol in w which has a c1 rule, since matrices 2,4 require c1 rules. If rule
2 is used, O is replaced with O1, and we use rule 3 next, simulating a c2 rule.
We can continue using rules 2,3 in alternate steps as long as both c1, c2 rules
are applicable. One usage of rule 2 followed by rule 3 completes the simulation
of a step of Π . At some step, we guess that there are no more symbols to which
we can apply a c1 rule from the next step onward. This is done by rule 4. O
is replaced by H1 instead of O1. If we have H1, then we can apply c2 rules as
long as we like using rule 6. At any point we can use rule 8, which will erase H1.
Thus, if we had guessed correctly while applying rule 4, then we will be left with
symbols of U1 in addition to symbols which can be processed by c2 rules. After a
point, if we apply rule 8 (thereby guessing that c2 rules are also not applicable),
then we will be left with symbols of U1 ∩ U2. The case of changing O1 to H2 is
similar. Note that this works because c1 does not create symbols which have c2
rules and vice versa; thus, if we obtain H1 correctly, any number of c2 rules will
not introduce symbols which can be processed by c1. Similar is the case for H2.

Thus, to summarize, if w′ has symbols a, b to which c1 and c2 rules are
applicable, then X = O. If w′ = a1a2, and if a1 has both c1, c2 rules applicable,
but if a2 has only c2 rules applicable, then either X = O, by which both a1, a2
are processed, or X = H1, by which we subject both a1, a2 to c2 rules 6. Similar
is the case if a1 had both rules and a2 has only c1 rules. In this case, we can have
X = O, processing a2 first followed by a1, or use X = H2, processing both a1, a2
by c1 rules 7. Similarly, if w′ = a, a ∈ V and if a has both c1, c2 rules applicable
to it, then we can either use X = H1 or X = H2. If all symbols a of w′ are in U2
(U1), then X = H2 (X = H1). Finally, when none of the symbols of w′ have any
applicable rules, X = H1 or H2, and use rule 8. Hence, by correct guesses, we
will end up with a string over U1 ∩ U2, and hence, NPICλ

1 (cat2) ⊆ NMAT λ.
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Now we look at result 2. Consider the pure catalytic P system of type (ii),
Π = (V,C, [1]1, u, R, 1) with C = {c1, c2}. Let U ⊆ V be the set of all symbols
of V which do not have any rules in R. Let Un, U1, U2, Ub ⊆ V be subsets of V
as defined in Theorem 1. Π halts when either one (or both) catalysts have no
applicable rules.

We construct the matrix grammar G = (N,T,M, S) where N = V ∪ {D} ∪
J ∪ 〈V 〉, where J = {O,O1, E,E1, E2, E3, E4, E5}, 〈V 〉 = {〈w〉 | ∃cia → ciw ∈
R,w �= λ}. In case w = λ, we represent 〈λ〉 by 〈D〉. Since the number of rules
as well as the lengths of all w in rules cia→ ciw is finite, 〈V 〉 is finite. Further,
J ∪ {D} � V , T = V̂ , V̂ = {â | a ∈ V }. The matrices are given by

1. (S → Xu), X ∈ {O,E1},
2. (a→ 〈α〉, b→ 〈β〉, O → X), if c1a→ c1w, c2b→ c2v, X ∈ {O1, E},

(α = w, if w �= λ, α = D, if w = λ, and β = v, if v �= λ, β = D, if v = λ)
3. (〈w〉 → w, 〈v〉 → v,O1 → O), v, w ∈ V + ∪ {D},
4. (〈w〉 → w, 〈v〉 → v, E → E1), v, w ∈ V + ∪ {D},
5. (a→ â, E1 → E5), a ∈ Un,

6. (a→ â, E5 → E5), a ∈ Un,

7. (a→ â, E1 → E2), a ∈ Ub,

8. (a→ â, E2 → E2), a ∈ Un,

9. (a→ â, E1 → E3), a ∈ U1,

10. (a→ â, E3 → E3), a ∈ U1 ∪ Un,

11. (a→ â, E1 → E4), a ∈ U2,

12. (a→ â, E4 → E4), a ∈ U2 ∪ Un,

13. (D → λ,Ei → Ei), i ∈ {2, 3, 4, 5},
14. (Ei → λ), i ∈ {2, 3, 4, 5}.

We start here with rule 1, obtaining Ou or E1u. Let us first examine the case of
Ou. This means we assume that atleast one step is executed by Π , with both
catalysts acting in parallel. Rule 2 does this, simulating rules corresponding to
c1, c2 replacing O. If O is replaced with O1, then we use rule 3, and continue with
rule 2. Thus, as long as rules 2,3 are used alternately, it means that in every step,
a c1 rule and a c2 rule is applied. At some point, we guess that from the next
step onward, atleast one of c1, c2 will not have applicable rules and hence we
need to stop. This is done by replacing O with E at the end of some step, which
symbolizes the fact that this is the last step wherein both c1, c2 have applicable
rules. With E, we can use rule 4, obtaining E1. With E1, we will check whether
we have guessed correctly or not.

Let E1x be the current sentential form. If x consists of only symbols of Un,
then we use rules 5,6 obtaining symbol the E5. All symbols a ∈ Un are converted
to â. Then, if rule 14 is applied after replacing all a’s by â, we obtain a terminal
string. If x has exactly one symbol of Ub and all other symbols in Un, then again
the guess is correct, since this symbol can be processed either by c1 or c2, but
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not by both. In this case, rules 7,8 are used, obtaining E2. If x had symbols of
U1, Un alone, then again the guess is correct since there are no symbols with c2
applicable rules. In this case, rules 9, 10 are used, obtaining E3. Finally, if x was
over U2∪Un, we use rules 11, 12. Thus, E2 symbolizes the case with exactly one
symbol of Ub, and the rest over Un, E5 symbolizes the case when all symbols are
over Un, E3 symbolizes the case when symbols are over U1 ∪ Un and finally E4,
when symbols are over U2 ∪ Un.

Thus, if the guess was not correct, then we will not get the entire string
over V̂ ∗, which means we will not get a terminal string. Thus, we obtain a
terminal string iff a configuration where atleast one of c1, c2 are forced to be idle
is obtained. �


4 Pure Catalytic Systems with Mobile Catalysts

In this section, we consider some variants of pure catalytic P systems with mo-
bile catalysts. A pure catalytic P system with mobile catalysts is a construct
Π = (V, T, C, μ, w1, . . . , wm, R1, . . . , Rm, i0). The only difference of this sys-
tem with respect to a pure catalytic system as defined in Section 3 is that
the rules are of the form ca → (c, tar)β where tar ∈ {here, out, in} and
β ∈ (V × {here, out, in})∗. Thus, the catalysts themselves can move. We shall
denote the set of numbers computed by pure catalytic P systems of degree ≤ m,
having atmost k mobile catalysts by NPMCλ

m(mcatk) (or NPMCm(mcatk)).
We show now that with 2 membranes and 2 mobile catalysts, using only

catalytic rules, all recursively enumerable sets of numbers can be obtained.

Theorem 3. NPMCλ
2 (mcat2) = NRE.

Proof. We only prove the assertion NRE ⊆ NPMCλ
2 (mcat2), and infer the other

inclusion from the Church-Turing thesis. The proof is based on the observation
that each set from NRE is the range of a recursive function. Thus, we will prove
the following assertion. For each recursively enumerable function f : N → N,
there is a mobile P System Π with 2 membranes having 2 mobile catalysts
satisfying the following condition: For any arbitrary x ∈ N, the system Π first
“generates” a multiset of the form ox

1 and halts if and only if f(x) is defined,
and, if so, the result of the computation is f(x).

In order to prove this assertion, we consider a register machine with 3 registers,
the last one being a special output register which is never decremented. Let there
be a program P consisting of h instructions P1, . . . , Ph which computes f . Let
Ph correspond to the instruction HALT and P1 be the first instruction. The
input value x is expected to be in register 1 and the output value in register 3.
Without loss of generality, we can assume that all registers other than the first
one are empty at the beginning of a computation. We can also assume that in
the halting configuration all registers except the third, where the result of the
computation is stored, are empty.
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Construct the pure catalytic P system with mobile catalysts Π =
(V,C, [1[2]2]1, ∅, {c1c2o}, R1, R2, 2) where

V = {c1, c2, o1, o2, o3} ∪ {Pj , P
′
j , Q

′
j , P

′′
j , Q

′′
j , P

′′′
j , Q′′′

j | 1 ≤ j ≤ h},
C = {c1, c2},
R1 = {c2o2 → (c2, in), c2Q′′′

i → (c2, in)(Pj , in)}
(simulation of a SUB instruction i = (SUB(2), k, j))

∪ {c1o1 → (c1, in), c1P ′′′
i → (c1, in)(Pj , in)},

(simulation of a SUB instruction i = (SUB(1), k, j)),
R2 = {c1o→ c1o(o1, out), c1o→ c1P1}

(generation of initial contents of register 1)
∪ {c1Pi → c1(or, out)Pj , r = 1, 2} ∪ {c1Pi → c1o3Pj , r = 3}

(simulation of an ADD instruction i = (ADD(r), j), 1 ≤ r ≤ 3)
∪ {c1Pi → (c1, out)P ′

i} ∪ {c2P ′
i → c2P

′′
i d}

∪ {c1P ′′
i → c1Pk, c2d→ c2} ∪ {c2P ′′

i → c2(P ′′′
i , out), c1d→ c1†}

(simulation of a SUB instruction i = (SUB(1), k, j))
∪ {c2Pi → (c2, out)Q′

i, c1Q
′
i → c1Q

′′
i e} ∪ {c2Q′′

i → c2Pk, c1e→ c1}
∪ {c1Q′′

i → c1(Q′′′
i , out), c2e→ c2†}

(simulation of a SUB instruction i = (SUB(2), k, j))
∪ {c1Ph → (c1, out)P ′

h, c2P
′
h → (c2, out)}.

In the initial configuration, membrane 2 contains the two mobile catalysts as
well the object o, and membrane 1 is empty. We shall now examine the working
of the system.

1. Generation of ox
1 , the initial contents of register 1: We apply the rules c1o→

c1o(o1, out) in R2 arbitrarily many times, there by introducing as many
copies of o1 in membrane 1. This is stopped at some point of time by the
rule c1o → c1P1 in R2, introducing the object P1 representing the initial
instruction in membrane 2.

2. Simulation of an ADD instruction Pi = (ADD(r), j), 1 ≤ r ≤ 3, 1 ≤ i, j ≤ h
This is done in membrane 2. The catalyst c1 interacts with Pi, converting it
into Pj , and also producing either an o1, o2 or an o3 (depending on whether
Pi is an instruction for incrementing register 1,2 or 3). o1, o2 are sent to
membrane 1, while o3 is retained in membrane 2.

3. Simulation of a SUB instruction Pi = (SUB(r), k, j), 1 ≤ i, j, k ≤ h, r = 1, 2
Let us look at the case when r = 1. c1 interacts with Pi, converting it into
P ′

i , while c1 moves out to membrane 1. In membrane 1, c1 decrements an
o1 if present, and comes back to membrane 2, while in parallel, c2 interacts
with P ′

i in membrane 2, converting it into P ′′
i d. Note that c1 can go inside

membrane 1 only in the presence of a decrementing instruction Pi (decre-
menting register 1). In the next step, if c1 is back in membrane 2, it means
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that there was indeed an o1 in membrane 1. Then, the rule c1P ′′
i → c1Pk

and c2d→ c2 are applied in parallel, completing the simulation.
However, if there was no o1 in membrane 1, then c1 would be waiting in
membrane 1. In this case, c2 interacts with P ′′

i , and send out a P ′′′
i . c1 then

interacts with P ′′′
i , converting it to Pj , and enters membrane 2. Note that

if c2 acts on P ′′
i while c1 is present in membrane 2, an infinite computation

will be induced by the rule c1d→ c1†.
The simulation of SUB instruction for register 2 is similar, except that c2
plays the role of c1 and the objects Q′

i, Q
′′
i , Q

′′′
i play the role of P ′

i , P
′′
i , P

′′′
i .

4. Halting : When the instruction Ph is introduced in membrane 2, there are
no more instructions to be simulated. So, c1 interacts with it, converting it
into P ′

h, and leaves membrane 2. c2 then acts with P ′
h, erases it and also

leaves membrane 2. Since we assume that all registers other than register 3
are empty at the end of a halting configuration, catalysts c1, c2 remain in
membrane 1. Thus, at the end, membrane 2 contains the contents of register
3 at the end of the computation.

�

We next show that if only 2 membranes are used, one mobile catalyst cannot
give universality.

Theorem 4. NPMCλ
2 (mcat1) ⊆NRCM(M,CF, ∅) = NMAT λ ⊂ NRE.

Proof. Consider a pure catalytic system with one mobile catalyst c and 2 mem-
branes Π = (V, {c}, [1[2]2]1, v, w,R1, R2, i0), where i0 is either 1 or 2. Without
loss of generality, let us assume that c is in membrane 1 in the initial config-
uration. We also assume that we remove components (x, out) from rules in R1
which contain a (x, out) on the RHS, since anyway x is lost.

Construct the random context matrix grammar G = (N,T,M, S) without
appearance checking with N = V1 ∪ V2 ∪ {1, 2}, where V1 = {a1 | a ∈ V },
V2 = {a2 | a ∈ V }. Let U1 = {a1 ∈ V1 | �ca→ cv ∈ R1} and let U2 = {a2 ∈ V2 |
�ca → cv ∈ R2}. Then, let T = V ′

i0 , where V ′
i0 = {a′i0 | a ∈ V }. The matrices

are the following:

1. ((S → 1v1w2), ∅, ∅), v1 ∈ V ∗
1 , w2 ∈ V ∗

2 ,

2. ((ai → xiytar, i→ tar), ∅, ∅), if ca→ (c, tar)(x, here)(y, tar) ∈ Ri,

and i, tar ∈ {1, 2},
2′. ((ai → λ, i→ tar), ∅, ∅), if ca→ (c, tar) ∈ Ri, and i, tar ∈ {1, 2},
3. ((i→ Si), ∅, ∅), i ∈ {1, 2},
4. ((ai0 → a′i0), {Si0}, ∅), ai0 ∈ Ui0 ,

5. ((aj → λ), {Si0}, ∅), if j �= i0,

6. ((ai → λ), {Si}, ∅), if i0 �= i and ai ∈ Ui,

7. ((ai0 → a′i0), {Si}, ∅), ai0 ∈ Vi0 , i �= i0,

8. ((Si → λ), ∅, ∅), i ∈ {1, 2}.
If we have v and w in membranes 1 and 2 in the initial configuration, then we
replace S with 1v1w2, where the 1 signifies the initial position of the mobile
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catalyst. At every step, we need to remember the position of the mobile catalyst
since it is this position which determines which rule is applicable.

In the presence of an i, i ∈ {1, 2}, we replace a symbol ai, if there is a
rule involving a in Ri. This is done by rule 2. Note that rule 2 is applicable
only when we have i. ai is replaced by a string xiytar if the rule was ca →
(c, here)(x, here)(y, tar). In this case, the second rule in the matrix would read
i→ i, since the catalyst is still in the same region. However, if the rule involved
(c, tar), then we would have had the second rule of the matrix as i→ tar. Thus,
after applying each rule, we know the current position of the catalyst.

At some point of time, we need to stop this process. We make a guess at some
point of time, by replacing i with Si. Now suppose we were in i0 and replaced it
with Si0 . Then, the guess is correct if no symbols in i0 have any applicable rules.
However, if there are symbols over Vi0 −Ui0 , then our guess is wrong since there
are symbols with applicable rules. We replace symbols ai0 ∈ Ui0 by a′i0 . We do
not require symbols of membranes other than i0 since they do not form part
of the output. Thus, we erase all aj , j �= i0, in the presence of Si0 . Thus, if our
guess was right, then at the end, we would obtain a string over Si0(V

′
i0 )

∗. We can
erase Si0 and thus obtain a terminal string. Note however that even if our guess
was right, if we erase Si0 prematurely, then we will not get a terminal string.
Similarly, if our guess was wrong, then we will definitely not get a terminal string
since symbols over Vi0 − Ui0 will remain. Rules 4, 5 are used in this case.

Now suppose we stop with Si, i �= i0. Then, if the guess is right, we will have
no symbols in membrane i with applicable rules. Since these symbols do not
contribute to the output, we can erase them. Thus, if all symbols were over Ui,
then all of them can be erased. The remaining symbols of the string are in i0
and belong to the output. We replace all symbols ai0 with a′i0 in the presence of
Si, i �= i0. Then we obtain a terminal string after erasing Si. Note here also that if
the guess was wrong, then we will have symbols of Vi−Ui which cannot be erased,
and so will never get a terminal string. Similarly, if we erase Si prematurely also,
we may not get a terminal string. Rules 6, 7 are used here.

Thus, irrespective of whether we have Si, i �= i0 or Si0 , we will always get a
terminal string, which represents the number of symbols in membrane i0 at the
end of a halting configuration if (i) we make the correct guess and (ii) we erase
Si after all other symbols in the string are processed. Clearly, for any w ∈ L(G),
|w| represents the number of symbols in the output membrane at the end of a
halting computation, and hence, NPMC2(mcat1) ⊆ NRCM(M,CF, ∅). �


5 Conclusion

In this paper, we have attempted to find the exact computing power of P systems
using catalysts. We have partially answered the interesting question regarding
universality of P systems with 2 catalysts. We have also shown that universality
can be obtained using 2 or more mobile catalysts, but cannot be obtained if less
than 2 mobile catalysts are used. The interesting question about the power of 2
catalysts while using λ-rules is still open.
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Mapping Non-conventional Extensions of
Genetic Programming

W.B. Langdon

Department of Computer Science
University of Essex, UK

Abstract. Conventional genetic programming research excludes mem-
ory and iteration. We have begun an extensive analysis of the space
through which GP or other unconventional AI approaches search and
extend it to consider explicit program stop instructions (T8) and any
time models (T7). We report halting probability, run time and function-
ality (including entropy of binary functions) of both halting and anytime
programs. Turing complete program fitness landscapes, even with halt,
scale poorly.

1 Introduction

Recent work on strengthening the theoretical underpinnings of genetic program-
ming (GP) has considered how GP searches its fitness landscape [1]. Results
gained on the space of all possible programs are applicable to both GP and
other search based automatic programming techniques. We have proved conver-
gence results for the two most important forms of GP, i.e. trees (without side
effects) and linear GP. Few researchers allow their GP’s to include iteration or
recursion. Indeed there are only about 60 papers (out of 4000) where loops or
recursion have been included in GP [2, Appendix B]. Without some form of
looping and memory there are algorithms which cannot be represented and so
GP stands no chance of evolving them.

We have recently shown [3] in the limit of large T7 programs (cf. Figure 1)
that:

– The T7 halting probability falls sub-linearly with program length. Our models
suggest the chance of not looping falls as O(length−1/2). Whilst including both
non-looping and programs which escape loops we observe O(length−1/4).

Memory (12 bytes=96bits)

CPU

I/O Registers

Overflow flag

Fig. 1. T7 and T8 have the same bit addressable memory and input–output

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 166–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Run time of terminating programs grows sub-linearly with program length.
Again both mathematical and Markov models are confirmed by experiments
and show run time of non-looping programs grows as O(length1/2). Similarly,
including both non-looping and programs which exit loops, for the T7, we
observe run time ≤ O(length3/4).

– Despite the fraction of programs falling to zero, the shear number of pro-
grams, means the number of halting T7 programs grows exponentially with
their size.

– Experimentally the types of loop and their length varies with the size of
T7 program. Long programs are dominated by programs which fall into,
and cannot escape from, one of two types of loop. In both cases the loops
are very tight. So (in our experiments) even for the longest programs (we
considered programs of up to 16 million instruction) on average no more
than a few hundred different instructions are executed.

It is important to stress that these, and our previous results, apply not only to
genetic programming, but to any other unconventional computation embedded
in the same representation.

While the T7 computer is Turing complete, [2, Appendix A], these results are
not universal. The T7 was chosen since it is a minimal Turing complete von Neu-
mann architecture computer with strong similarities with both real computers
and linear genetic programming [4]. At the 2006 Dagstuhl “Theory of Evolution-
ary Algorithms” [Seminar 06061] the question of the generality of the T7 was
raised. In Section 4 we shall show that the impact of the addition of an explicit
halt instruction is, as predicted, to dramatically change the scaling laws. With
the T8 computer (T7+halt) almost all programs stop before executing more
than a few instructions.

Sections 5 and 6 consider a third alterative halting technique: the any time
algorithms [5]. In this regime, each program is given a fixed quantum of time and
then aborted. The program’s answer is read from the output register regardless of
where its execution had reached. These last two experimental sections (5 and 6)
consider program functionality, rather than just if they stop or not.

2 T7 and T8 – Example Turing Complete Computers

To test our theoretical results we need a simple Turing complete system. In [3]
we introduced the T7 seven instruction CPU, itself based on the Kowalczy F-4
minimal instruction set computer http://www.dakeng.com/misc.html, cf. ap-
pendix of [2]. The T8 adds a single halt instruction to the T7 instruction set.

The T8 (see Figure 1 and Table 1) consists of: directly accessed bit addressable
memory (there are no special registers), a single arithmetic operator (ADD), an
unconditional JUMP, a conditional Branch if oVerflow flag is Set (BVS) jump,
four copy instructions and the program halt. COPY PC allows a programmer
to save the current program address for use as the return address in subroutine
calls, whilst the direct and indirect addressing modes allow access to stacks and
arrays.
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Table 1. T8 Turing Complete Instruction Set

Every ADD either sets or clears the overflow bit v.
COPY PC and JUMP use just enough bits to ad-
dress each program instruction. LDi and STi, treat
one of their arguments as the address of the data.
(LDi and STi data addresses are 4 or 8 bits.)
JUMP addresses are moded with program length.
Programs terminate either by executing their last
instruction (which must not be a jump) or by exe-
cuting a HALT.

Instruction args operation
ADD 3 A + B→C v set
BVS 1 #addr→pc if v=1
COPY 2 A→B
LDi 2 @A→B
STi 2 A→@B
COPY PC 1 pc→A
JUMP 1 addr→pc
HALT 0 pc→end

In Section 4 eight bit byte data words are used, whilst Sections 5 and 6 both
use four bit nibbles. The number of bits in address words is just big enough to
be able to address every instruction in the program. E.g., if the program is 300
instructions, then BVS, JUMP and COPY PC instructions use 9 bits. These
experiments use 12 bytes (96 bits) of memory (plus the overflow flag).

3 Experimental Method

There are too many programs to test all of them, instead we gather representative
statistics about those of a particular length by randomly sampling. By sampling
a range of lengths we create a picture of the whole search space. Note we do not
bias the sampling in favour of short programs.

One hundred thousand programs of each of various lengths (1. . . 16 777 215
instructions) are each run from a random starting point (NB not necessarily from
the start) with random inputs, until either they execute a HALT, reach their last
instruction and stop, an infinite loop is detected or an individual instruction has
been executed more than 100 times. (In practise we can detect almost all infinite
loops by keeping track of the machine’s contents, i.e. memory and overflow bit.
We can be sure the loop is infinite, if the contents is identical to what it was
when the instruction was last executed.) The program’s execution paths are then
analysed. Statistics are gathered on the number of instructions executed, normal
program terminations, type of loops, length of loops, start of first loop, etc.

4 Terminating T8 Programs

Figure 2 shows, as expected, inclusion of the HALT instruction dramatically
changes the nature of the search space. Almost all T8 programs stop, with only
a small fraction looping. This is the opposite of the T7 (most programs loop).

Figures 3 and 4 show the run time of terminating T8 programs. In both
programs stopped by reaching their end (Figure 3) and by a HALT instruction
(Figure 4), the fraction of programs falls exponentially fast with run time. In
both cases, it falls most rapidly with short programs and appears to reach a limit
of (7/8)−length for longer programs. A decay rate of 7/8 would be expected if
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Fig. 2. Almost all short T8 programs are stopped by reaching their end (*). This
proportion falls rapidly (about ∝ 1/length) towards zero. Longer programs are mostly
stopped by a halt instruction �. The fraction of programs trapped in loops (+ and ×)
appears to settle near a limit of 1 in 150.

programs ran until they reach a HALT instruction. I.e. to a first approximation,
run time of long terminating T8 programs can be estimated by ignoring the
possibility of loops. This gives a geometric distribution and so an expected run
time of 8 instructions regardless of program size. For all but very short programs,
Figure 5 confirms the mean is indeed about 8. For a geometric distribution the
standard deviation is 7.48 (also consistent with measurements) so almost all T8
programs terminate after executing no more than 31 instructions (mean+3σ).
Again this is in sharp contrast with the T7, where long terminating T7 programs
run many instruction, and so perhaps may do something more useful.

5 T8 Functions and Any Time Programs

The introduction of Turing completeness into genetic programming raises the
halting problem, in particular how to assign fitness to a program which may loop
indefinitely [6]. Here we look at any time algorithms [5] implemented by T8 com-
puters. I.e. we insist all program halt after a certain number of instructions. Then
we extract an answer from the output register regardless of whether it terminated
or was aborted. (The input and output registers are mapped to overlapping mem-
ory locations, which the CPU treats identically to the rest of the memory, cf. Fig-
ure 1.) We allow the T8 53 instructions. (53 was chosen since by then we expect
all but 0.1% of non-looping T8 programs to have stopped, cf. Figure 4.)
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In this section and Section 6 we look at functions of two inputs, by defining
two input registers (occupying adjacent 4 bit nibbles) and looking at the data
left in memory after the program stops (or is stopped). In these sections, the
data word size is 4 bits. Each random program is started from a chosen random
starting point 256 times just as before, except the two input registers are given
in turn each of their possible values. To avoid excessive run time and since we are
now running each program 256 times (rather than once) the number of programs
tested per length is reduced from 100000 to 1000.

In addition to studying the random functions generated by the T8 we also
study the variation between individual programs runs with each of the 256 dif-
ferent inputs and how this varies as the program runs. We use Shannon’s [7]
information theoretic entropy measure S = −

∑
k pklog2(pk), to quantify the

difference between the state of the T8 (programme counter, overflow bit and
memory) on different runs, with different inputs, at the same time.

5.1 Any Time T8 Entropy

We have two confounding effects. We measure the change in the variation be-
tween T8 processors as they run the same program (from different inputs), so a
major influence is whether a particular processor is still running or has obeyed
a HALT instruction or reached the end of its program. For simplicity when
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calculating the entropy of a mixture of stopped and still executing programs,
the stopped programs are treated as if they were all in the same stopped state.
This means in the graphs that follow, the number of runs of a program that
reach the tth instruction has an impact of the entropy as well as (for example)
the difference between the contents of memory. (Remember apart from the input
register, each of the 256 runs, start in the same, random, state.) To illustrate
this, Figure 6 shows the 229 (+) of 1000 T8 programs of 7 instructions which
always get stuck in a loop tend to have a high entropy. In contrast the entropy
of the remaining 42 programs circ strongly depends upon how many runs (test
cases) are still executing. (Figure 6 takes a snap shot after 53 instructions have
been obeyed). It is clear the number of active test cases has a strong influence on
the variation in memory contents etc. between test cases. I.e. entropy, in most
short T8 programs, is as large as possible, given the number of test cases still
running. This is consistent with the fact that most short programs implement
the identity function, see Figure 9, which has maximum entropy.

Figure 7 shows the average number of test cases still running up to instruction
53. The shortest programs tend to stop or loop immediately. Only those still
looping show on Figure 7. Short programs which loop on one test case tend to
loop on all of them, giving the almost constant plots for short programs seen
in Figure 7. Longer random programs, tend to run for longer and have more
variation between the number of instructions they execute on the different test
cases. Figure 8 shows there is a corresponding behaviour in terms of variation
between the same program given different inputs. I.e., loops are needed to keep
small programs running and compact loops mean small programs tend to keep
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Fig. 7. Mean number of test cases where T8 program has not HALTed or stopped.
1000 random T8 programs of different lengths.

their variability. This gives the almost constant high entropy plots for short
programs seen in Figure 8. However longer random programs tend to run for
longer and use more instructions. More random instructions actually means that
the memory etc. tends to behave the same on every input and this convergence
increases as the programs run for more time. Indeed there is also less variation
in average behaviour with longer random T8 programs. Leading to the general
decrease in entropy with run time seen in Figure 8. In the next section we will
restrict ourselves to just looking at the I/O registers rather than the whole
of memory, that is the notion of programs as implementing functions which
map from inputs to output. However we shall see the two views: entropy and
functionality, are consistent.

5.2 Any Time T8 Convergence of Functions

There are 25624×24
= 3.23 10616 possible functions of two 4 bit inputs and an 8 bit

output. However, as shown by Figure 9, uniformly chosen random programs of a
given length sample these functions very unequally. (This is also true of the T7,
cf. Figures 12 and 13). In particular the identity function and the 256 functions
which return constants are much more likely than others. Figure 9 also plots two
variations on the identity (where the least significant or most significant nibble
implement a 4 bit identity function) and two cases of 4 bit constants. In these
four cases the other 4 bits are free to vary. Note that while they represent a huge
number of functions they are less frequent than either of their 8 bit namesakes.
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The rise in the frequency of the constant functions and fall in the identity
function with increasing program size (Figure 9) are consistent with the corre-
sponding fall in entropy seen in Figure 8. (The same will be seen in the next
section for the T7, cf. Figures 12 and 14.)

6 T7 Functions and Any Time Programs

Having shown the success of the any time approach, we return to the T7. The
measurements in this section are based on running the T7 on 256 test cases as in
Section 5. However since without a HALT instruction, the T7 programs tend to
run for much longer, we increase the any time limit from 53 to 1000 instructions.

Figure 10 confirms removing HALT does indeed mean most programs run
up to the any time limit. Figure 10 relates to all 256 runs of each random
program. Whilst the error bars (top solid line) show on average there is some
variation between identical programs starting with different inputs for middle
sized programs both very large and very small programs have the same (any
time) run time. This suggests most big T7 programs loop regardless of their
input. Whilst short programs halt whatever their input. Only at intermediate
lengths can the input switch random programs looping/halting behaviour.

The diagonal line shows that, for program shorter than 4 000 000, the frac-
tion of runs which stop falls approximately as 1/

√
length, as expected. (For
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even longer T7 programs, the 1000 instruction limit aborts a few programs even
though they are not stuck in loops.)

Figure 11 shows that the fraction of programs which never loop, falls as
O(1/

√
length), as we found previously [3]. Figure 11 plots combined behaviour

over 256 test cases rather than a single run and the data word size is half that
reported in [3]. However, initially we have similar results: the fraction of T7
programs which do not loop falls with program length. Notice that for longer
programs the fraction does not continue towards zero. This is because we now
use the any time approach to abort non-terminated programs and so a few pro-
grams (19–47 out of 1000) are stopped early, when they might have continued
to find themselves in loops.

As expected, when we allow the T7 to run for longer the variation between
test cases reduces and there is an increased tendency for programs to become
independent of their inputs. If a program’s output does not depend on its input,
i.e. all 256 test cases yield the same answer, then it effectively returns a constant.
In Figure 12 the constant functions (×) are those where the program’s output
(after up to 1000 instructions) does not depend upon its inputs. Notice the rise
in the proportion of constants with program length, even though, in most cases,
each program runs exactly 256× 1000 instructions.

In [3] we found that longer T7 programs tend to obey more random instruc-
tions (about

√
length) before they get stuck in tight loops. We suggest that the

rise in constants with program length in Figure 12, is due to the greater loss
of information in longer random sequence of non-looping instructions before a
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8 bits (e.g. identity).
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Fig. 15. As Figure 14 except we include only runs which did not loop on any test case.
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tight loop is entered. Also, the loss of knowledge about the input registers in the
final loop is usually either small or repeating the same instructions many times
does not loose any more information.

This explanation is reinforced if we look at only the programs which did not
loop. Figure 13 shows the rise in the proportion of constantswith program length is
even more pronounced. Whilst Figure 15 shows, if loops are excluded, in most cases
variation between different input values falls rapidly to zero. Figures 14 and 15 also
show test cases become more similar as the programs run. However programs which
become locked into loops have less of a tendency to converge than those which are
not looping. I.e. loops actually lock in variation and without them random pro-
grams are dissipative and so implement only the 2n constant functions.

7 Discussion

Of course the undecidability of the Halting problem has long been known,
however it appears to have become an excuse for not looking at unconven-
tional approaches to evolve more powerful than O(1) functions. More recently
work by Chaitin [8] started to consider a probabilistic information theoretic ap-
proach. However this is based on self-delimiting Turing machines (particularly
the “Chaitin machines”) and has lead to a non-zero value for Ω [9] and post-
modern metamathematics. The special self-delimiting approach means halting
programs cannot be extended and so each blocks out an exponentially large part
of the search space. This can give very different statistics for the whole space.
Our approach is firmly based on the von Neumann architecture, which for prac-
tical purposes is Turing complete. Indeed the T7 is similar to the linear genetic
programming area of existing Turing complete genetic programming research.

Real computer systems lose information. We had expected this to lead to
further convergence properties in programming languages with iteration and
memory. However these results hint at strong differences between looping and
non-looping programs. It appears that many tight loops are non-dissipative, in
the sense that they cycle the computer through the same sequence of states in-
definitely. In contrast, non-looping programs continue to explore the computer’s
state space but in doing so they become disconnected from where they started, in
that they arrive at the same state regardless of where they started. This means
they are useless, since they implement a constant.

Requiring input and output to be via fixed width registers is limiting. Variable
sized I/O (cf. Turing tapes) is needed in general. Real CPUs achieve this by
multiplexing their use of I/O registers. May be this too can be modelled.

It may be possible to obtain further results for the space of von Neumann
architecture computer programs by separating the initial execution from looping.
These initial experiments suggest the program path (i.e. conditional branches,
jumps, etc.) of the program is initially not so important and that our earlier
models on linear programs might be relevant. If, in other machines, most loops
are also drawn from only a small number of types (in the case of T7 only two) it
may be possible to build small predictive models of loop formation and execution.
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Only a tiny fraction of the whole program is used. The rest has absolutely
no effect. In future it may be possible to derive bounds on the effectiveness of
testing (w.r.t. ISO 9001 requirements) based on code coverage.

8 Conclusions

The introduction of an explicit HALT instruction leads to almost all programs
stopping. The geometric distribution gives an expected run time of the inverse
of the frequency with which the HALT is used. This gives, in these experiments,
very short run times and few interesting programs.

We also explored the any time approach, looking particularly at common func-
tions and information theoretic measures of running programs. Entropy clearly
illustrates a difference between non-dissipative looping programs and dissipative
non-looping programs. There is some evidence that large random non-looping
programs converge on the constant functions, however, possibly due to the size of
the available memory, this is not as clear as we expected. This needs further in-
vestigation. We anticipate that detailed mathematical and Markov models could
be applied to both the T7 and T8 any time approaches.

While genetic programming is perhaps the most advanced automatic program-
ming technique, we have been analysing the fundamentals questions concerning
the nature of programming search spaces. Therefore these results apply to any
form of unconventional computing technique using this or similar representations
which seeks to use search to create programs.
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Abstract. A box-ball system is a kind of cellular automata obtained
by the ultradiscrete Lotka-Volterra equation. Similarities and differences
between behavious of discrete systems (cellular automata) and continu-
ous systems (differential equations) are investigated using techniques of
ultradiscretizations. Our motivations is to take advantage of behavious
of box-ball systems for new kinds of computations. Especially, we tried
to find out useful periodic box-ball systems(pBBS) for random number
generations. Applicable pBBS systems should have long fundamental cy-
cles. We focus on pBBS with at most two kinds of solitons and investigate
their behaviours, especially, the length of cycles and the number of or-
bits. We showed some relational equations of soliton sizes, a box size
and the number of orbits. Varying a box size, we also found out some
simulation results of the periodicity of orbits of pBBS with same kinds
of solitons.

1 Introduction

In 1990, Takahashi and Satsuma introduced a soliton cellular automaton
(SCA)[7]. The SCA is now called a box and ball system(BBS) because they
explained transitions of the system using an infinite array of boxes and a finite
number of balls. BBS has a property of solitons because of its transition being
obtained by the ultradiscrete Lotka-Volterra equation[6,8].

In 1997, a new soliton cellular automaton is proposed by Takahashi et al[6].
That system is called box and ball system with a carrier(BBSC). BBSC can
be considered as a kind of abstract model of Hyper-Threading(HT) Technology.
HT Technology is a recent attractive CPU hardware technology. The main aim
of HT Technology brings out the parallel efficiency of CPUs and improves the
performance of a system. We hope that we could make a connection between a
study of BBSC and the HT Technology in the future.

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 181–194, 2006.
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Recently, the researche areas using ultradiscritizations is extending and it
contains crystal formulations, combinatorics, stochastic cellular automata and
algorithms[1,2,4,5].

In 2003, the notion of periodic box-ball system(pBBS) is introduced by Yoshi-
hara et al[9]. They have shown a formula to determine the fundamental cycle
of a pBBS for a given initial state. In the same year, Habu et al.[3] investigated
properties about randomness and autocorrelations of configurations of pBBS and
compared with Gold sequences. They showed some experimental results about
their properties for a fixed system size varying the number of balls and the size
of solitons.

In this paper, we focus on pBBS with at most two kinds of solitons. We
re-formulate the pBBS and define sets of configurations precisely. A set of con-
figurations with a same type is divided into some disjoint same size of orbits. We
investigate the size of the configuration set and the number of orbits for designing
a pBBS with a longer fundamental cycle. According to the result of Yoshihara
et al.[9], we reformulate the equation of the fundamental cycles. Further, we
induce the equation of the number of orbits and prove that its upperbound is
not depened on the size of boxes. Finally, we show some experimental results
between a size of boxes and the number of orbits.

2 Periodic Box-Ball Systems (pBBS)

Let Q={0, 1},N a natural number, N̄ = {1, 2, . . . , N} and 2N = {1, 2, . . . , 2N}.
We define three functions dbl : QN̄ → Q2N , snd : Q2N → QN̄ and trs :
Q2N → Q2N by dbl(c)j = c((j−1) mod N)+1, snd(c)j = cN+j and trs(c)j =

min

(
1− cj ,

j−1∑
i=1

(ci − trs(c)i)

)
. The shift function sftα : QN̄ → QN̄ is defined

by sftα(c)j = c((j−1+α) mod N)+1 (α = 0, · · · , N − 1) .

Definition 1 (N-pBBS). The periodic box-ball system with the size N (N-

pBBS) is the dynamical system (C, f), where C = {c ∈ QN̄ |
N∑

j=1

cj <
N

2
} and

the transition function f : C → C is defined by f = snd ◦ trs ◦ dbl.

The definition of the N -pBBS is well-defined. It is guaranteed by the next
proposition.

Proposition 1. Assume #{i ∈ N̄ |ci = 1} ≤ N
2 for c ∈ QN̄ .

(1) !{i ∈ N̄ |ci = 1} = !{i ∈ N̄ |(snd ◦ trs ◦ dbl(c))i = 1}, where !S is the size of
the set S.

(2) (snd ◦ trs ◦ dbl) ◦ sftα(c) = sftα ◦ (snd ◦ trs ◦ dbl)(c) (α = 0, 1, · · · , N − 1).

The proposition is proved using the following lemma.
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Lemma 1. For c ∈ QN , we put δj =
j∑

i=1

(dbl(c)i − trs(dbl(c))i),

Δj =
j∑

i=1

(
dbl(c)i − dbl(c)i

)
, where x denote the complement 1−x for x ∈ Q.

Then we have

(1) δj = Δj + max
1≤i≤j

{dbl(c)i −Δi} (j = 1, 2, . . . , 2N).

(2) ΔN+j = ΔN +Δj (j = 1, 2, . . . , N).
(3) δN+j = max{δN +Δj , δj} (j = 1, 2, . . . , 2N).

The proof of Lemma 1 and Proposition 1 is listed in an appendix.

Fig. 1. Transition of pBBS

sft12

sft12

f f

Fig. 2. Commutative diagram

Example 1. Fig. 1 is an example of a transition of pBBS with size 30. Fig. 2 is
an example transition (f ◦ sft12 = sft12 ◦ f) to confirm Proposition 1(2).

Definition 2 (Fundamental cycle of a pBBS). Let (C, f) be a pBBS with
size N . The fundamental cycle of a configuration c ∈ C is defined by l(c) =
min {t|f t(c) = c, t > 0}.

Yoshihara et al. classified configurations of pBBS using size of solitons L1, · · · ,
Ls and introduced an equation to compute the fundamental cycle of it.
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Theorem 1 (Yoshihara 2003[9]). Let (C, f) be a pBBS with size N . If a
configuration c ∈ C has a type (L1, L2, · · · , Ls), then the fundamental cycle T
of the configuration c is

T = L.C.M

(
NsNs−1

lsl0
,
Ns−1Ns−2

ls−1l0
, · · · , N1N0

l1l0
, 1
)
,

where lj = Lj −Lj+1 (j = 1, 2, · · · , s− 1) and Nj = l0 +2
j∑

i=1

ni (Li − Lj+1). �


t

t + 1
t + 2
t + 3
t + 4
t + 5
t + 6
t + 7
t + 8
t + 9
t + 10
t + 11
t + 12
t + 13
t + 14
t + 15
t + 16
t + 17
t + 18
t + 19
t + 20
t + 21
t + 22
t + 23
t + 24

Fig. 3. Time evolution rule of pBBS

3 The Number of Orbits of a pBBS

In this section, we restrict the number of solitons up to 2. We re-formulate the
class of configurations and imply a simple equation of the fundamental cycle.
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We also introduce an equation of the total number of all configurations and the
number of orbits.

Definition 3. Let (C, f) be pBBS with size N . All configurations with two soli-
tons is defined by

C2 = {c ∈ C|c = 0x11l10x21l20x3 , 0 ≤ x1, x3, 1 ≤ l1, l2, x2, x1 + l1 +x2+ l2 +x3 = N}.

For numbers L1 and L2 (L1 + L2 <
N

2
, L1 ≥ L2), we define a set C(L1,L2,N)

of configurations with a type (L1, L2, N) as follows:

(a) If c = 0x11l10x21l20x3 and (l1 ≥ l2, l2 ≤ x2) then c ∈ C(l1,l2,N) and
sftα(c) ∈ C(l1,l2,N) for α = 0, 1, · · · , N − 1.

(b) If c = 0x11l10x21l20x3 and (l1 ≥ l2, x2 < l2) then c ∈ C(l1+l2−x2,x2,N), and
sftα(c) ∈ C(l1+l2−x2,x2,N) for α = 0, 1, · · · , N − 1.

We note that we can find some number L1 and L2 for a configuration c =
0x11l10x21l20x3 (l1 < l2) to belong in C(L1,L2,N) using above Definition and
sftα.

Example 2. Let N = 16.

(a) c = 0313021206 ∈ C(3,2,N)

· · ·L1 = 3, L2 = 2.

(b) c = 0512011206 ∈ C(3,1,N)

· · ·L1 = 3, L2 = 1.

Definition 4 ((L1, L2, N)-pBBS). We define a subsystem (L1, L2, N)-pBBS
of pBBS (C, f) with size N by a dynamical system (C(L1,L2,N), f). The funda-
mental cycles for all c ∈ C(L1,L2,N) are the same number T . We call T as the
fundamental cycle of C(L1,L2,N).

The definition of the (L1, L2, N)-pBBS is well-defined. It is guaranteed by the
next proposition.

Proposition 2. (1) f(c) ∈ C(L1,L2,N) for any c ∈ C(L1,L2,N).
(2) If c0, c1 ∈ C(L1,L2,N) then l(c0) = l(c1).
(3) Let α = L1 + L2, β = L1 − L2, N = 2(L1 + L2) + n. The number of config-

urations of (L1, L2, N)-pBBS is (2α+ n)(2β + n).

We denote the number S = (2α+ n)(2β + n) in Proposition 2(3) by S.

Definition 5 (Orbits of pBBS). Configuration c and d are on the same orbit
if and only if d = f i(c) for some i.(cf. Fig. 4)

C(L1,L2,N) is covered by several disjoint orbits like {f i(c)|i ≥ 0}. By Proposi-
tion 2(2), each orbits contains T elements, where T is the fundamental cycle of
C(L1,L2,N).
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c

f(c)

f2(c)

f j(c)

f j+1(c)

fT−1(c)

Fig. 4. The orbits of (L1, L2, N)-pBBS

Fig. 5. The orbits of (2, 1, 8)-pBBS
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Example 3. Fig. 5 is an example of orbit sets. C(2,1,8) is covered by two orbit
sets where each set contains 17 elements. The fundamental cycle of c is 17 for
any c ∈ C(2,1,8). S = 34, T = 17 and K = 2.

Theorem 2 (The number of orbits). Let α = L1 + L2, β = L1 − L2, N =
2(L1 + L2) + n.

(1) The fundamental cycle T of (L1, L2, 2(L1 + L2) + n)-pBBS is

T = L.C.M

(
(2α+n)(2β+n)

G.C.D((2α+n)(2β+n), α−β
2 n)) ,

2β+n
G.C.D(2β+n,β)

)
,

(2) The number of orbits K of (L1, L2, 2(L1 + L2) + n)-pBBS is
K = G.C.D

(
(2α+ n)(2β + n), (2α+ n)β, α−β

2 n
)
.

Proof. (1) is induced by Theorem 1. Since T = L.C.M

(
N2N1

l2l0
,
N1N0

l1l0
, 1
)

,

N2 = N , N1 = N − 4L2, N0 = l0, l1 = L1 − L2 and l2 = L2, we have
T = L.C.M

(
N(N−4L2)

L2(N−2L1−2L2)
, N−4L2

L1−L2
, 1
)
. Since α = L1 + L2, β = L1 − L2, we

have T = L.C.M

(
(2α+n)(2β+n)

G.C.D((2α+n)(2β+n), α−β
2 n) ,

2β+n
G.C.D(2β+n,β)

)
.

(2) By Proposition 2(3) and above results, we have

K =
(2α+ n)(2β + n)

L.C.M

(
(2α+n)(2β+n)

G.C.D((2α+n)(2β+n), α−β
2 n) ,

2β+n
G.C.D(2β+n,β)

)
=

2α+ n

L.C.M

(
2α+n

G.C.D((2α+n)(2β+n), α−β
2 n) ,

1
G.C.D(2β+n,β)

)
=

(2α+ n)G.C.D (2β + n, β)

L.C.M

(
(2α+n)G.C.D(2β+n,β)

G.C.D((2α+n)(2β+n), α−β
2 n) , 1

)
=

(2α+ n)G.C.D (2β + n, β)
(2α+n)G.C.D(2β+n,β)

G.C.D((2α+n)(2β+n),(2α+n)β, α−β
2 n)

= G.C.D

(
(2α+ n)(2β + n), (2α+ n)β,

α− β
2

n

)
�


The next theorem shows some relations between the box-size n and the number
of orbits K, especially the upper bound of the number of orbits K.

Theorem 3. Let α = L1 + L2, β = L1 − L2.

(1) gcd(L1 − L2, n)|K,
(2) gcd(2, n)|K,
(3) gcd(L1 + L2, n)|K, and

(4) K| αβ(α − β)
G.C.D (L1, L2)

.
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Proof. (1) Let L1 − L2 = ka, n = ma. We have

K = G.C.D

(
(2α+ n)(2β + n), (2α+ n)β,

α− β
2

n

)
= G.C.D

(
(2α+ma)(2ka+ma), (2α+ma)ka,

α− ka
2

ma

)
= a×G.C.D

(
(2α+ma)(2k +m), (2α+ma)k,

α− ka
2

m

)
.

(2) Let n = 2k. We have

K = G.C.D

(
(2α+ n)(2β + n), (2α+ n)β,

α− β
2

n

)
= G.C.D

(
(2α+ 2k)(2β + 2k), (2α+ 2k)β,

α− β
2

2k
)

= 2×G.C.D
(

2(α+ k)(β + k), (α+ k)β,
α− β

2
k

)
.

(3) Let L1 + L2 = ka, n = ma. We have

K = G.C.D

(
(2α+ n)(2β + n), (2α+ n)β,

α− β
2

n

)
= G.C.D

(
(2ka+ma)(2β +ma), (2ka+ma)β,

ka− β
2

ma

)
= a×G.C.D

(
(2k +m)(2β +ma), (2k +m)β,

ka− β
2

m

)
.

(4) Let g = G.C.D (an+ b, cn). Since g|cn and cn = G.C.D (a, c)× c
G.C.D(a,c) ×

n, we can set g = gagcgn where ga|G.C.D (a, c), gc| c
G.C.D(a,c) and gn|n.

Since gagn|an and gagn|(an+ b), we have gagn|b. So we can induce gagcgn |
bc

G.C.D(a,c) .
Let a = β, b = 2αβ and c = α−β

2 .

Then we have g = G.C.D
(
2αβ + βn, α−β

2 n
)
| 2αβ·α−β

2

G.C.D(β,α−β
2 )

.

K = G.C.D

(
(2α+ n)(2β + n), (2α+ n)β,

α− β
2

n

)
= G.C.D

(
(2α+ n)(2β + n), G.C.D

(
2αβ + βn,

α− β
2

n

))

| G.C.D

⎛⎝(2α+ n)(2β + n),
αβ(α − β)

G.C.D
(
β, α−β

2

)
⎞⎠

| αβ(α − β)
G.C.D (L1 − L2, L2)

=
αβ(α − β)

G.C.D (L1, L2)
. �
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4 Simulations

The lefthand side of Fig. 6 is a graph of n and K for C(13,2,2(13+2)+n). A peak

of K is 660 and
αβ(α − β)

G.C.D(L1, L2)
=

15 · 13 · 2 · 2
G.C.D(13, 2)

= 660. The righthand side

of Fig. 6 is a graph of n and K for C(12,3,2(12+3)+n). A peak of K is 270 and
αβ(α − β)

G.C.D(L1, L2)
=

15 · 9 · 2 · 3
G.C.D(12, 3)

= 270.

Fig. 6. Simulation results
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In Theorem 3 we showed an upperbound of K. By the simulation results
αβ(α − β)

G.C.D(L1, L2)
may not only be an upper boud but also the maximum value

of K.
Finally we have another conjecture from experimental resuts. pBBS with

the number of orbits K = 1 must have a longer fundamental cycle, so the
next conjecture may be useful to design a pBBS with a longer fundamental
cycle.

Conjecture 1. Let K be the number of orbits for C(L1,L2,2(L1+L2)+n). If gcd(L1−
L2, n) = 1, gcd(2, n) = 1 and gcd(L1 + L2, n) = 1 then K = 1.

5 Concluding Remarks

We re-formulate the pBBS with up to 2 kinds of solitons using precise equations.
We showed the formula for the fundamental cycle and the number of orbits
for pBBS. Further we proved the number of orbits is bounded some constant
defined by the type of solitons. This means that we can design pBBS with longer
fundamental cycle if we can choose larger box size pBBS. Future works contain
to investigate a expression of orbits and behaviour of orbits when we increase
sorts and number of solitons.
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Appendix

Proof. (of Lemma 1)

(1) Since for any c, trs(c)1 = 0, we have for j = 1, (left hand side) = c1−trs(c)1
= c1 = (right hand side). Now suppose that the equality holds for some j.
Then it follows that

δj+1 = δj + dbl(c)j+1 − trs(dbl(c))j+1

= δj + dbl(c)j+1 −min
{
dbl(c)j+1, δj

}
= δj + max

{
dbl(c)j+1 − dbl(c)j+1, dbl(c)j+1 − δj

}
= δj + max {Δj+1 −Δj , dbl(c)j+1 − δj}
= max {δj −Δj +Δj+1, dbl(c)j+1}

= max
{

max
1≤i≤j

{dbl(c)i −Δi}+Δj+1, dbl(c)j+1

}
= Δj+1 + max

{
max
1≤i≤j

{dbl(c)i −Δi}, dbl(c)j+1 −Δj+1

}
= Δj+1 + max

1≤i≤j+1
{dbl(c)i −Δi},

which establishes the equality for j + 1.
(2) It follows from the fact that dbl(c)N+i = dbl(c)i (i = 1, 2, . . . , N).
(3) By virtue of (1) and (2),

δN+j = ΔN+j + max
1≤i≤N+j

{dbl(c)i −Δi}

= ΔN+j + max
{

max
1≤i≤N

{dbl(c)i −Δi}, max
1≤i≤j

{dbl(c)N+i −ΔN+i}
}

= ΔN +Δj

+ max
{

max
1≤i≤N

{dbl(c)i −Δi}, max
1≤i≤j

{dbl(c)i −ΔN −Δi}
}

= max
{
Δj +ΔN + max

1≤i≤N
{dbl(c)i −Δi},

Δj + max
1≤i≤j

{dbl(c)i −Δi}
}

= max {Δj + δN , δj} . �
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Proof. (of Proposition 1).

(1) By (3) of Lemma 1, δ2N = max{δN+ΔN , δN}. On the other hand, by the as-

sumption,ΔN =
N∑

i=1

(
dbl(c)i − dbl(c)i

)
=

(
N∑

i=1

2dbl(c)i

)
−N = 2

(
N∑

i=1

ci

)
−

N ≤ 0. Hence we have δ2N = δN . This implies that

#{i ∈ N |ci = 1} −#{i ∈ N |(snd ◦ trs ◦ dbl(c))i = 1}

=

(
N∑

i=1

ci

)
−
(

N∑
i=1

(snd ◦ trs ◦ dbl(c))i

)

=

(
2N∑

i=N+1

di

)
−
(

2N∑
i=N+1

trs(d)i

)

=
2N∑

i=N+1

(di − trs(d)i)

= s2N − sN

= 0.

(2) Since sftα = sft1 ◦ · · · ◦ sft1︸ ︷︷ ︸
α

, it suffices to show this for α = 1. For the sake

of simplicity, we put d = dbl(c) and e = dbl(sft1(c)). Then the equations are
rewritten as

sft1(snd(trs(d)))j = snd(trs(e))j (j = 1, 2, . . . , N) (1)

Furthermore, to describe the effect of shift, we put δj =
j∑

i=1

(di − trs(di)),

εj =
j∑

i=1

(ei − trs(ei)), Δj =
j∑

i=1

(
di − di

)
, Ej =

j∑
i=1

(ei − ei).

These variables are related as Δj+1 = Ej +(c1−c1), δj+1 = max{εj, Ej +c1}

for j = 1, 2, . . . , 2N − 1. In fact, Δj+1 =
j+1∑
i=1

(
di − di

)
= (d1 − d1) +

j∑
i=1

(ei − ei) = Ej + (c1 − c1).

For the second one, by Lemma 1 (1),

δj+1 = Δj+1 + max
1≤i≤j+1

{di −Δi}

= Δj+1 + max
{
d1 −Δ1, max

2≤i≤j+1
{di −Δi}

}
= Ej + (c1 − c1) + max

{
c1, , max

1≤i≤j
{di+1 −Δi+1}

}
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= Ej + max
{
c1, max

1≤i≤j
{di+1 −Δi+1 + (c1 − c1)}

}
= Ej + max

{
c1, max

1≤i≤j
{ei − Ei}

}
= max

{
Ej + c1, Ej + max

1≤i≤j
{ei − Ei}

}
= max {Ej + c1, εj} .

Next, we claim that sft1(snd(trs(d)))j and snd(trs(e))j are related by

sft1(snd(trs(d)))j = max {snd(trs(e))j , min{ej , EN+j−1 + c1}} (2)

for j = 1, 2, . . . , N . In fact, if j < N ,

sft1(snd(trs(d)))j = snd(trs(d))j+1

= trs(d)N+j+1

= min
{
dN+j+1, δN+j

}
= min {eN+j , max{εN+j−1, EN+j−1 + c1}}
= max {min{eN+j , εN+j−1}, min{eN+j, EN+j−1 + c1}}
= max {trs(e)N+j , min{eN+j , EN+j−1 + c1}}
= max {snd(trs(e))j , min{ej , EN+j−1 + c1}} .

For j = N ,

sft1(snd(trs(d)))N = snd(trs(d))1
= trs(d)N+1

= min
{
dN+1, δN

}
= min {eN , max{εN−1, EN−1 + c1}}
= max {min{eN , εN−1}, min{eN , EN−1 + c1}}
= max {trs(e)N , min{eN , EN−1 + c1}}
= max {snd(trs(e))N , min{eN , EN−1 + c1}} .

Now all we have to show is that

snd(trs(e))j ≥ min{ej , EN+j−1 + c1} (j = 1, 2, . . . , N). (3)

In fact, by combining this with the relation (2), we obtain (1).
To show (3), we apply similar argment about δj ’s and Δj ’s to εj ’s and Ej ’s.
Recall that, from the assumption of c, it follows that EN ≤ 0. By Lemma 1
(3), we have εN = max{εN +EN , εN} = ε2N . On the other hand, by Lemma
1 (1),

ε2N = E2N + max
1≤i≤2N

{ei − Ei} ≥ E2N + e2N − E2N = e2N = c1.
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Thus we have εN ≥ c1. From this it follows that

εN+j−1 = max{εj−1, εN + Ej−1}
≥ εN + Ej−1

≥ c1 + Ej−1

≥ c1 + Ej−1 + EN

= EN+j−1 + c1.

Consequently, we have

snd(trs(e))j = trs(e)N+j

= min{eN+j, εN+j−1}
≥ min{eN+j, EN+j−1 + c1}
= min{ej , EN+j−1 + c1},

that is, the inequality (3). �
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He took the golden Compasses, prepar’d
In Gods Eternal store, to circumscribe
This Universe, and all created things:
One foot he center’d, and the other turn’d
Round through the vast profunditie obscure,
And said, thus farr extend, thus farr thy bounds,
This be thy just Circumference, O World.
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Abstract. What is the meaning of hypercomputation, the meaning of
computing more than the Turing machine? Concrete non-computable
functions always hide the halting problem as far as we know. Even the
construction of a function that grows faster than any recursive func-
tion — the Busy Beaver — a more natural function, hides the halting
function, that can easily be put in relation with the Busy Beaver. Is this
super-Turing computation concept related only with the halting problem
and its derivatives? We built an abstract machine based on the historic
concept of compass and ruler construction which reveals the existence of
non-computable functions not related with the halting problem. These
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the meaning of computing beyond Turing.
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1 Operations

Let us imagine a construction of algorithms acting in the framework of Euclid’s
geometry. We can use an infinite (in reality sufficiently large) sheet of paper,
an unmarked ruler and a compass. Now we need to specify the list of possible
operations.

– P (P1, . . . , Pn) — Draw a finite number of distinct points P1, . . . , Pn.1

– C(P,Q) — Draw the circle with the center P and going through the point
Q.

– LC(P,Q;A) — Give the label A to the circle with the center P and going
through the point Q.

– L(P,Q) — Draw the line passing through P and Q.
– LL(P,Q;A) — Give the label A to the line passing through P and Q.
– LP (O1, O2;A,B) — Give the label A to the point of the intersection of the

objects (lines or circles) O1 and O2, in the case of two intersections choose
freely the order of labeling by A and B.

– D(A) — Delete the label A.
– X ∈ C : n — If the point X is in the circle C, then execute the n-th

instruction; otherwise go to the next instruction.

Of course, from the first operation we see that points are always labeled, unless
labels are ultimately removed through aD instruction. Let us add that each label
can be used only in the unique way, i.e., one label can identify exactly one object.
This does not mean that some objects cannot have two or more labels.

A program is a numbered list of operations of the above types. After the n-th
operation the next one (with the number n+ 1) is executed, unless it is the last
operation or it is the test operation X ∈ C : n.

Example 1. Let us consider the construction of two perpendicular lines. We need
to start with two points P,Q, then draw the line through these points. Next we
need two circles to construct a perpendicular line. Here is the code.

01 :: P (P,Q)
02 :: L(P,Q)
03 :: LL(P,Q;A)
04 :: C(P,Q)
05 :: LC(P,Q;C)
06 :: D(Q)
07 :: LP (A,C;Q1, Q2)
08 :: C(Q1, Q2)
09 :: LC(Q1, Q2, C1)
10 :: C(Q2, Q1)
11 :: LC(Q2, Q1, C2)

1 We can think about this operation as a weak version of the choice axiom – we can
always choose finite set of different points from Euclidean plane.
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12 :: LP (C1, C2;S1, S2)
13 :: L(S1, S2)

By the similarly constructed programs we can give Euclid machines, which
draw equilateral triangles or a bisector of some angle.

Let us consider an analogy which exists between programs of Euclid machines
and theorems of Euclidean geometry.

Example 2. We can start by recalling Thales’ Theorem: An inscribed angle in a
semicircle is a right angle. How can this fact be checked by means of Euclid
machines. Let us imagine the following construction.

– Draw three different, non-colinear points O,A,X .
– Draw the circle C with the center O and going through A; draw the line L

through O and A, label the point of intersection of L and C by B.
– Draw the line through O and X , label the other point of the intersection of

this line and C as P .
– Draw two lines: the first one going through A and P ; the second one going

through B and P .
– Draw the perpendicular L′ for the line BP going by P .
– Label the intersection of L′ and L as A′.

Now let us analyze the above part of the program (which can be translated into
instructions of the Euclid machine in the obvious manner). We have constructed
the angle ∠APB and, after that, we have added the perpendicular L′ to PB in
the point P . Thus the fact that ∠APB is a right angle is equivalent to the fact
that the points A (the intersection of AP with L) and A′ (the intersection of L′

and L are identical. We can use the test operation to check the last statement,
let us assume that every point is a circle with a radius of the length 0.

– A′ ∈ A : n

We can use this situation to build some kind of output. For example, the
program would end its activity if this condition is true; otherwise it would go
into infinite loop. Or we can draw some previously chosen labels for some point
(e.g. O): + for the positive test; − for the negative one.

In the light of the above example we can translate proposed proofs of Euclidean
geometry in equivalent programs; the proof is correct if for all initial configura-
tions we obtain the previously chosen special sign (e.g., +) of an acceptance.

2 URM Machines

In this section we present the Turing completeness of the above described geo-
metrical machine. We use for this purpose the unlimited register machine [3]
(URM). Every unlimited register machine program is a finite sequence of in-
structions acting on (potentially) infinite number of registers containing natural
numbers. The instructions of URM machines programs can be chosen in the
following way.
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– Z(n) — Put 0 into the n-th register.
– S(n) — Increment the current value of the n-th register.
– J(n,m, k) — If the values in the n-th and m-th registers are equal, jump to

the k-th instruction.

2.1 The Emulation of Registers

Let us consider a program P of some URM machine, and let r be a number of
registers used in this program. Then we will use a pencil of r lines to emulate
these registers. The construction will be done in the following way.

– Draw two distinct points P,Q.
– Draw the line through P and Q.
– Label this line as R1.
– Draw the perpendicular to R1 in P .
– Label this perpendicular as Rn.
– Construct the bisector of R1 and Rn.
– Label it as Rn−1.
– Construct the consecutive bisectors of R1 and Rn−1, Rn−2, . . . , R2 and label

them as Rn−2, . . . , R1.
– Draw the circle with the center P and going through the point Q.
– Label this circle as C.
– Label the intersections of C and R1, . . . , Rn as X1, Y1, . . . , Xn, Yn.

The line Ri is used to remember values of the i-th register. The distance of
point Xi to P , where Xi, lying in the circle, informs us about the current value
which is equal to log2

|PQ|
|PXi| . In the case we need to put zero into some register

we should move the point Xi to the intersection of Ri and C again.
Let us add an important remark. During the whole computation (or rather

drawing) the labels of the main elements of our system, i.e., the starting points
P , Q, register lines R1, ..., Rn, and the circle C will be not removed or changed.

2.2 The Translation of URM Instructions

Let us describe the translation of URM instructions into operations of Euclid
machines

Z(n): move the point Xn to the intersection of Rn and C
k :: D(Xn)
k + 1 :: LP (Rn, C;Xn)

S(n): divide the segment PXn into two subsegments with the same length
and label the center point as Xn

k :: C(P,Xn)
k + 1 :: LC(P,Xn;C1)
k + 2 :: C(Xn, P )
k + 3 :: LC(Xn, P ;C2)
k + 4 :: LP (C1, C2;P1, P2)
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Fig. 1. Simulation of 4 registers
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Fig. 2. Values in one register

k + 5 :: L(P1, P2)
k + 6 :: LL(P1, P2;L)
k + 7 :: D(Xn)
k + 8 :: LP (L,Rn;Xn)
k + 9 :: D(C1)
k + 10 :: D(C2)
k + 11 :: D(P1)
k + 12 :: D(P2)
k + 13 :: D(L)

J(n,m, s): test whether the point Xn is in the circle with the center P and
the radius PXm and whether the point Xm is in the circle with the
center P and the radius PXn

k :: C(P,Xn)
k + 1 :: LC(P,Xn;Cn)
k + 2 :: C(P,Xm)
k + 3 :: LC(P,Xm;Cm)
k + 4 :: Xn ∈ Cm : k + 6
k + 5 :: P ∈ C : k + 7
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k + 6 :: Xm ∈ Cn : k + 10
k + 7 :: D(Cn)
k + 8 :: D(Cm)
k + 9 :: P ∈ C : k + 13
k + 10 :: D(Cn)
k + 11 :: D(Cm)
k + 12 :: P ∈ C : s′

where s′ is the starting number of the Euclid corresponding instruc-
tion, equivalent to the s-th instruction of the URM machine.

Note that, in the machine above, we used the unconditional jumping instruc-
tion P ∈ C. This unconditional jumping could have been translated directly
from the URM language into an appropriate geometrical instruction.

2.3 Euclid Machines are Turing Complete

Let us add the we have to proceed with the re-enumeration of the instructions
due to the fact that every Z instruction needs 2 operations, every S instruction
needs 14 operations and J needs 13 operations. With this re-enumeration we
have a complete description how to translate any URM machine into some
Euclid machine. So, we obtain the following proposition.

Proposition 1. Every URM machine can be simulated by some Euclid ma-
chine.

Example 3. Let us start with the simple example of the sum of two natural
numbers. We start with a preparation of 3 lines R1, R2, R3 of the same pencil
with the center P , and the circle C going through these lines with the points of
intersections called X1, X2, X3.

\\ draw the line R1
01 :: P (P,Q)
02 :: L(P,Q)
03 :: LL(P,Q;R1)
04 :: C(P,Q)
05 :: LC(P,Q;C)
06 :: D(Q)
07 :: LP (R1, C;X1, Y1)
\\ draw the perpendicu-
lar line R3
08 :: C(X1, Y1)
09 :: LC(X1, Y1, C1)
10 :: C(Y1, X1)
11 :: LC(Y1, X1, C2)

12 :: LP (C1, C2;S1, S2)
13 :: L(S1, S2)
14 :: LL(S1, S2, R3)
15 :: D(C1)
16 :: D(C2)
17 :: D(S1)
18 :: D(S2)
19 :: D(Y1)
20 :: LP (R3, C;X3, Y3)
21 :: D(Y3),
\\ draw the bisector of
the angle R3, P,R1 and
call it R2
22 :: C(X1, P )

23 :: LC(X1, P ;C1)
24 :: C(X3, P )
25 :: LC(X3, P ;C3)
26 :: LP (C1, C3;S1, S2)
27 :: L(S1, S2)
28 :: LL(S1, S2, R2)
29 :: D(S1)
30 :: D(S2)
31 :: D(C1)
32 :: D(C3)
33 :: LP (R2, C;X2, Y2)
34 :: D(Y2)

To start a computation for some n,m ∈ N we need to place the points X1, X2
on the lines R1, R2 in such a way that the following conditions hold: |PX1| =
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|PX′
1|

2n , |PX2| = |PX′
2|

2m , where X ′
0, X

′
1 represent the initial position of X1, X2.

For this purpose we need to use n times the operation S(1) and m times the
operation S(2).

We can use the following URM machine program to implement the problem
of an addition. We assume the arguments are in the registers 1 and 2; the rest
of registers is initially equal to zero.

1 : J(2, 3, 6)
2 : S(1)
3 : S(3)

4 : J(2, 3, 6)
5 : J(1, 1, 2)

Now this sequence of the URM instructions can be translated into operations
of the Euclid machine in the following manner.

\\J(2, 3, 6)
01 :: C(P,X2)
02 :: LC(P,X2;C2)
03 :: C(P,X3)
04 :: LC(P,X3;C3)
05 :: X2 ∈ C3 : 7
06 :: P ∈ C : 8
07 :: X3 ∈ C2 : 11
08 :: D(C2)
09 :: D(C3)
10 :: P ∈ C : 14
11 :: D(C2)
12 :: D(C3)
13 :: P ∈ C : 68
\\S(1)
14 :: C(P,X1)
15 :: LC(P,X1;C1)
16 :: C(X1, P )
17 :: LC(X1, P ;C2)
18 :: LP (C1, C2;P1, P2)
19 :: L(P1, P2)
20 :: LL(P1, P2;L)
21 :: D(X1)
22 :: LP (L,R1;X1)
23 :: D(C1)

24 :: D(C2)
25 :: D(P1)
26 :: D(P2)
27 :: D(L)
\\S(3)
28 :: C(P,X3)
29 :: LC(P,X3;C1)
30 :: C(X3, P )
31 :: LC(X3, P ;C2)
32 :: LP (C1, C2;P1, P2)
33 :: L(P1, P2)
34 :: LL(P1, P2;L)
35 :: D(X3)
36 :: LP (L,R3;X3
37 :: D(C1)
38 :: D(C2)
39 :: D(P1)
40 :: D(P2)
41 :: D(L)
\\J(2, 3, 6)
42 :: C(P,X2)
43 :: LC(P,X2;C2)
44 :: C(P,X3)
45 :: LC(P,X3;C3)
46 :: X2 ∈ C3 : 48

47 :: P ∈ C : 49
48 :: X3 ∈ C2 : 52
49 :: D(C2)
50 :: D(C3)
51 :: P ∈ C : 55
52 :: D(C2)
53 :: D(C3)
54 :: P ∈ C : 68
\\J(1, 1, 2)
55 :: C(P,X1)
56 :: LC(P,X1;C1)
57 :: C(P,X1)
58 :: LC(P,X1;C1)
59 :: X1 ∈ C1 : 61
60 :: P ∈ C : 62
61 :: X1 ∈ C1 : 65
62 :: D(C1)
63 :: D(C1)
64 :: P ∈ C : 68
65 :: D(C1)
66 :: D(C1)
67 :: P ∈ C : 14

3 Coordinates of Points

What we have shown in the preceding sections is that a suitable encoding of
URM machines exist in the Cartesian plane, by performing geometric construc-
tions using an unmarked ruler and a compass. Many other such encodings exist,
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possibly more efficient. We did not really define computable functions in the
sense of an Euclid-computable analogous to, e.g., the Turing-computable con-
cept. In fact, we didn’t need of that concept.

However, we can have it directly over the plan, as we are going to show in
this section.

Let us recall some useful notions. A field F′ is said to be a field extension of
a field F, if F is a subfield of F′. Given some field we can extend it by several
methods, for us the most natural one is to pick some elements pj not in F,
and then to define F′ = F(pj) as the smallest field containing F and all pj . For
instance, the real numbers can be extended by i =

√
−1 to the field of complex

numbers.
In our case we are interested in points on the Euclidean plane with good (from

the computational point of view) coordinates. The most convenient choice is the
field A of algebraic numbers, which are computable and enumerable. Because we
want to start with completely freely chosen points we need to extend this field
by the set of all initial points (strictly speaking by the set of real, non-algebraic
coordinates). Hence, for the starting points P1 = (x1, y1), ..., Pk = (xk, yk) we
obtain the extended field A(x1, y1, . . . , xk, yk).

We can enumerate elements of such field A(x1, y1, . . . , xk, yk) by natural num-
bers, hence the problem of any construction of points on Euclidean plane can be
seen as some computation on natural numbers.

Let us precise the above remark. Every construction available with Euclid
machines is done by drawing circles, lines, and finding intersections. Hence, we
can obtain coordinates of these newly constructed points from the previously
constructed by solving systems of equations of at most second degree. This means
that new points will be also in A(x1, y1, . . . , xk, yk). In this way we have the
following theorem.

Proposition 2. For any Euclid machine, with the initial points P1 = (x1, y1),
..., Pk = (xk, yk), all points reachable have their coordinates in the field A(x1, y1,
. . . , xk, yk).

If we start with points with algebraic coordinates (in A), then all constructed
points will be also (with respect to their coordinates) in A.

Now, let us observe this fact closer for its connection with computability.
Of course, there are enumerations of all points with algebraic coordinates by
natural numbers, let us denote by ν(P ) the index of the point P in some fixed
enumeration.

Let us assume that we use a uniform method of labeling points created during
the activity of an Euclid machine, for example Q0, . . . , Qk. Then the final
configuration of points can be described by the natural number obtained by any
fixed coding 〈. . .〉 of the indexes of the points 〈ν(Q0), . . . , ν(Qk)〉. Now, we can
connect with every Euclid machine some natural function, where as arguments
we have ν(P0), . . . , ν(Pn) for the initial points P0, ..., Pn and the result is given
by the index of the final configuration reached during the computation (e.g., a
single point). Such functions can be called Euclid computable.



The Euclid Abstract Machine 203

4 Undecidable Problems

Let us clarify the important point. We can think about two different types of
activity for Euclid’s machines. The first one is connected with the described
method of computation on encodings (given by points) of natural numbers. The
second type of activity is simply drawing of points with a ruler and a compass.
Now we need to distinguish carefully these two levels: a simulation of computa-
tions and drawings.

Let us exemplify this problem by means of the trisection problem. Angle
trisection is the division of an arbitrary angle into three equal angles. It was one
of the three famous geometric problems of antiquity for which solutions using
only compass and ruler were sought (the other two were: circle squaring and
cube duplication). The construction was proved to be impossible by Wantzel [1]
only in 19th century. From this result we can infer an obvious corollary.

Proposition 3. The problem of an angle trisection can not be solved by any
Euclid machine.

But now, we can reformulate the question about trisection. We can represent
any angle ∠AOB by three points A,O,B. If we restrict ourselves to points from
A, then with the use of the above mentioned coding we obtain the following
new problem: does there exist such Euclid machine that given three numbers
ν(A), ν(O), ν(B), it finds the number representation ν(P ) of the point of the
trisection of ∠AOB, i.e., ∠AOB = 3∠AOP .

The first claim needing justification in this problem is the existence of such
point P with algebraic coordinates. But this fact can be obtained by simple
arithmetic taken from analytic geometry.
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Fig. 3. Angle trisection

Proposition 4. For any points A,O,B, with algebraic coordinates, there exists
the point P with algebraic coordinates too, such that ∠AOB = 3∠AOP .

Proof. We use simple methods of analytic geometry to prove that for an angle
placed in the center of a given circle (where the center of this circle and the points
of intersections of the angle with this circle are given by algebraic coordinates),
then the point which gives a solution of the trisection problem on this circle has
also algebraic coordinates.



204 J. Mycka, F. Coelho, and J.F. Costa

Without any loss of generality we can identify the point O with the origin
(0, 0), because we can always use a translation with algebraic parameters to
obtain such a situation. Now, we have two lines: OA and OB, for A = (xA, yA),
B = (xB , yB) they have the equations: xAy − yAx = 0, xBy − yBx = 0. We can
find now tan(∠AOB) = yBxA−yAxB

xAxB+yAyB
. Of course, tan(1

3∠AOB) can be found from
the equation

tan(∠AOB) =
3 tan(1

3∠AOB) − tan3(1
3∠AOB)

1− 3 tan2(1
3∠AOB)

,

which means that tan(1
3∠AOB) is an algebraic number.

The next step is devoted to compute the coefficient of the line OP given in
the Cartesian plane by y = ax, with a given by

yB

xB
+ tan(1

3∠AOB)

1− yB

xB
tan(1

3∠AOB)

(xB can always be made different from 0 by some rotation). And now to find
coordinates of P all we need is a solution of the following system of equations
with algebraic coefficients: x2

P +y2
P = x2

A +y2
A and yP = axP , such systems have

always algebraic solutions. �

So, now we are concerned with the crucial question. Can the number ν(P ) be
computed? Our first observation is that if it would be possible for some URM
machine, then this process of computation could be presented in the well known
manner by Euclid machines. By observation of the proof of Proposition 4 we
have such the method which can be performed on (possibly infinite) decimal
expansion of the coordinates (for example, by machines of Type Two Theory
[4]). But our problem needs a computation on natural numbers, not on infinite
sequences of digits. And, let us recall, that even if we can generate from the
natural label of some algebraic number x its decimal expansion, it is impossible
to obtain from finite subsequences of this expansion that natural number, which
represents x (from density of the set of algebraic numbers we can always find
infinite number of natural descriptions of algebraic numbers which agree with
given finite sequence of digits).

But the above paragraph does not solve our problem. We can not compute
the ν(P ) from its decimal expansion, but maybe there is some direct method to
solve this problem.

Let us assume at the moment that we have two special families of machines
working on the Euclidean plane possibly with more instructions then Euclid
machines. If we fix some enumeration ν of algebraic points on the Euclidean
plane then for a given pencil of registers described in Section 2.1 we have the
machines E1

n which for the given Xn register with the value k draw the point
P , such that ν(P ) = k. Contrary, the machines E2

n for given point P draw the
register Xn with the value equal to ν(P ).
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Theorem 1. Let us define the trisection function T : N3 → N in the following
way

T (ν(A), ν(O), ν(B)) = ν(P ) ⇐⇒ ∠AOB = 3∠AOP.
Moreover, let T ∗ denote the machine working on the Euclidean plane and equiv-
alent to T .2 Then the composition of E1

n ◦ T ∗ ◦ E2
n is not computable by any

Euclid machine.

Proof. With the above given machines we can draw the trisection in the fol-
lowing manner. First we translate points A,O,B by E1

1 , E
1
2 , E

1
3 machines into

X1, X2, X3. Then we use the Euclid version of T to compute ν(P ) in some regis-
ter, e.g. X4. Then the machine E2

4 draws the solution of the trisection problem.
If this activity could be done with Euclid machines then we would have a con-
tradiction with Proposition 3. �
We can ask about a possibility of the trisection construction by a ruler and a
compass restricted to points with algebraic coordinates. But, let us recall, the
classical example of impossibility of this construction is the angle of π

3 , which
can be completely described by points with algebraic coordinates.

The above theorem creates a question about a source of Euclid non-computa-
bility of the trisection problem. We have three choices:

1. E1
n, E2

n are not Euclid computable, but T is Turing computable;
2. E1

n, E2
n are Euclid computable, but T is not Turing computable;

3. E1
n, E2

n are not Euclid computable and T is not Turing computable.

Of course, we know that some points with algebraic coordinates can not be
drawn (with fixed initial points with algebraic coordinates) by a ruler and a
compass. But it is not clear whether this observation implies that E1

n, E2
n -

which are some transformations of points on the Euclidean plane - can not be
done by Euclid machines. This consideration leads us to the following conjecture.

Conjecture. If E1
n, E2

n are Euclid computable, then T is not Turing computable.

Let us observe that the above statement is always true. But we formulate it as a
conjecture to stress that its non-vacuous character depends on the truth of the
antecedent of the implication, which is still unknown for us.

5 Remarks

It is very interesting to observe that the trisection function does not have a
character of a self-referential problem (like, e.g., the halting problem). It would
be worth of explanation whether such function has any connection to classical
uncomputable functions like the halting function or the busy beaver function.

We can also ask the natural question: is every Euclid computable function
also Turing computable? The obvious suggestion to this question is the answer
2 T ∗ uses registers in the same way as Euclid machines, but with a possibility of

different instructions.
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YES, by Church’s thesis. Of course, we can interpret this model as a model
with infinite precision, which leads us to comparison with such constructions
as BSS machines. Whatever, the fully mathematical answer will need a precise
construction of a proof.

Let us also add that Fourier series can be interpreted as sums of circles with
decreasing radii. This could be used to obtain another (functional) interpretation
of Euclid machines.
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Abstract. Cellular Automata are considered to be discrete dynamical
systems as well as computing systems. Spectral analysis has been em-
ployed to investigate the behavior of dynamical systems. We calculated
the power spectra from the evolutions starting from a random initial
configuration to analyze the temporal behavior in elementary cellular
automata. As a result, rule 110 has 1/f spectrum for the longest time
steps. Rule 110 alone has proved to be capable of supporting universal
computation in elementary cellular automata. These results suggest that
there is a relationship between computational universality and 1/f noise
in cellular automata.

1 Introduction

Cellular automata (CAs) are spatially and temporally discrete dynamical sys-
tems with large degrees of freedom. In this paper we deal with one-dimensional
and two-state, three-neighbor CAs which are called elementary CAs (ECAs).
ECAs have been investigated in detail for their simplicity ([1], appendix in [2]).
Although ECA rule space is not large, there is an interesting rule such as rule
110 which exhibits complex behavior including several types of gliders [3]. We
apply power spectral method to analyze the behavior of ECAs. While it was
used for the analysis of the spatial structure produced by ECAs in connection
with regular languages [4], we apply it to the analysis of the temporal behavior
of ECAs especially for the purpose of investigating the relationship between the
computational universality and the dynamical behavior of ECAs.

2 Spectral Analysis of Elementary Cellular Automata

Let xi(t) be the value of site i at time step t in an ECA. The value of each site
is specified as 0 or 1. The site value evolves by iteration of the mapping,

xi(t+ 1) = F (xi−1(t), xi(t), xi+1(t)). (1)

Here F is an arbitrary function specifying the ECA rule. The ECA rule is de-
termined by a binary sequence with length 23 = 8,

F (1, 1, 1), F (1, 1, 0), · · · , F (0, 0, 0). (2)

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 207–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Therefore the total number of possible distinct ECA rules is 28 = 256 and each
rule is abbreviated by the decimal representation of the binary sequence (2) as
used in [1]. Out of the 256 ECA rules 88 of them remain independent (appendix
in [5]).

#32 #108 #90

#18 #110 #73

Fig. 1. Typical examples of space-time patterns of elementary cellular automata of 100
cells for 100 time steps from a random initial configuration

Configurations obtained at successive time steps in one-dimensional CA evo-
lution are shown on successive horizontal lines in which black squares represent
sites with value 1, white squares sites with value 0. It is called a space-time
pattern. Figure 1 shows several examples of space-time patterns of ECA with
100 cells for 100 time steps from a random initial configuration. Throughout this
paper we use random initial configurations in which each site takes state 0 or
state 1 randomly with independent equal probabilities and periodic boundary
conditions where each end of the array is connected like a ring.

The evolution in rule 32 leads to a homogeneous configuration in several time
steps. It is called Class I in the qualitative classification scheme by Wolfram [6].
The evolution in rule 108 leads to periodic structures. It is called Class II. Rule 90
and rule 18 which are classified into Class III exhibit chaotic patterns. The evolu-
tion in rule 110 which is classified into Class IV has complex localized structures.
Class IV CAs are expected to be capable of supporting universal computation [6].
Rule 73 is somewhat exceptional and is called ”locally chaotic” [5] because the
array is divided into some independent domains by stable ”walls”. Periodic or
chaotic patterns are generated in each domain.
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Spectral analysis is one of the useful methods to investigate the behavior of
dynamical systems [7]. Therefore it is reasonable to use the spectral analysis
for investigating the behavior of CAs because CAs are considered to be discrete
dynamical systems.
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Fig. 2. Typical examples of power spectra of elementary cellular automata calculated
from the evolution starting from a random initial configuration. The y-axis is plotted
on a logarithmic scale. Array size is 500 and the number of observed time steps is 1024.

The discrete Fourier transform of time series of state xi(t) of the site i for
t = 0, 1, ..., T − 1 is given by

x̂i(f) =
1
T

T−1∑
t=0

xi(t)exp(−i2πtf
T

), (3)

where T means the number of observations [8].
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It is natural to define the power spectrum of CAs as

S(f) =
∑

i

|x̂i(f)|2, (4)

where the summation is taken over all cells in the array. The power S(f) at fre-
quency f intuitively means the “strength” of the periodic vibration with period
T/f in the evolution of T time steps.
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Fig. 3. The same power spectrum of rule 110 as is taken in Fig. 2. Both x and y-axis
are plotted on a logarithmic scale. The dashed line represents the least square fitting
of the spectrum from f = 1 to f = 10 by ln S(f) = α + β ln f , with β = −1.283.

Figure 2 shows the typical examples of power spectra of ECAs calculated
from the evolution starting from a random initial configuration of 500 cells for
T = 1024 time steps. Only half of the components are shown since the other
half are redundant.The y-axis is plotted on a logarithmic scale. The power of
rule 32 is extremely low at all frequencies except f = 0. The extremely low
power is ascribed to the initial transient behavior which vanishes in the first
few time steps. The power spectrum of rule 108 is characterized by a spike in
f = 512 which is caused by periodic structures with period T/f = 1024/512 = 2.
The power spectrum of rule 90 is white noise which has almost equal power at
all frequencies. This result implies that the evolution of rule 90 is virtually in
disorder, although it is causally determined. The power spectrum of rule 18 is
white noise with a peak with period T/f = 1024/512 = 2. The peak with period
2 in power spectrum is accumulated not by particular cells selectively but by
all cells equivalently. This result shows that evolution of rule 18 exhibits chaotic
behavior including periodic vibration with period 2. The power spectrum of rule
110 has not only the components in the wide range of frequencies but also peaks.
The peak in f = 146 implies that there is a lot of periodic structures with period
T/f = 1024/146 = 7. They are periodic background characteristic in rule 110
and called ”ether”. Other two peaks in f = 292 and f = 440 are the second
and third harmonics respectively. The shape of power spectra of rule 73 varies
abruptly depending on the behavior in the formed domains, although the peaks
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of period 2(f = 512) and 3(f = 341) are always observed. Unlike rule 18 and
rule 110, the peaks in power spectra of rule 73 are accumulated by particular
cells selectively.

3 1/f Noise in Elementary Cellular Automata

Figure 3 shows the same power spectrum of rule 110 as is taken in Fig. 2, although
both x and y-axis are plotted on a logarithmic scale. The dashed line represents
the least square fitting of the spectrum from f = 1 to f = 10 by lnS(f) =
α+β ln f , with β = −1.283. This spectrum behaves like S(f) ∝ fβ with β ≈ −1
at low frequencies and it is called 1/f noise. 1/f noise is a random process
which has been observed in the voltage of vacuum tubes, the rate of traffic flow,
the loudness of music and so on. But its origin is not well understood [9]. The
lower the frequency becomes in 1/f noise, the more power the component has.
It implies that there is a long-term correlation in the fluctuation.

#54

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000

S
(
f
)

f

#54

f^(-0.606)

#62

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000

S
(
f
)

f

#62

f^(-1.167)

Fig. 4. Space-time patterns (left) and the power spectra (right) of rule 54 (top) and
rule 62 (bottom). The space-time pattern consists of 100 cells for 100 time steps from
a random initial configuration. The power spectrum is calculated from the evolution
starting from a random initial configuration of 500 cells for 1024 time steps. The dashed
line represents the least square fitting of the spectrum from f = 1 to f = 10 by
ln S(f) = α + β ln f , β = −0.606 for rule 54 and β = −1.167 for rule 62.
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There are two other ECA rules with 1/f spectrum than rule 110. Those are
rule 54 and rule 62 whose space-time patterns and power spectra are shown in
Fig. 4. Rule 54 has been considered to be class IV but is not proved to be com-
putationally universal. Wolfram guesses that rule 62 is not capable of supporting
universal computation because the patterns produced by the rule are ”in essence
purely nested” (p.694 in [10]).

We investigate the value of β calculated from the least square fitting of the
power spectra lnS(f) = α + β ln(f) from f = 1 to f = 10 for longer observed
times steps T = 2000 to compare the long-term behavior of rule 110, 54 and
62. One-dimensional CAs in general have larger variations in the value of β
with initial configurations than two-dimensional CAs. Therefore we calculate
the average value of β for 400 distinct random initial configurations in the array
of 200 cells. As a result, the average value of β is -1.276 in rule 110, whereas
-0.467 in rule 54 and -0.638 in rule 62. This result means that rule 110 retains
1/f noise even in the evolution for T = 2000 time steps but rule 54 and rule
62 do not. In other words rule 110 has the longest duration during which power
spectra exhibit 1/f -shape in ECAs.

4 1/f Noise in Rule 110

The most controversial problem in 1/f noise is whether 1/f noise lasts forever or
not. If there is an upper limit of the duration time in 1/f noise, the power spectra
obtained from the time series with the duration time beyond the upper limit do
not exhibit power law at low frequencies. We can guess that 1/f spectrum in CAs
is caused by transient behavior because periodic behavior does not generate 1/f
spectrum but spikes. Generally speaking, the evolution on a finite array in CAs
leads to periodic behavior sooner or later, as long as deterministic boundary
conditions such as periodic boundary conditions are employed. Therefore, the
spectrum turns close to flat line at low frequencies as the observed time steps T
becomes long on finite array.

Figure 5 shows the average value of β calculated from the least square fitting
of the power spectrum lnS(f) = α+β ln(f) from f = 1 to f = 10 for 400 random
initial configurations as a function of array size N and the observed time steps
T in rule 110. As the observed time steps T becomes larger in a fixed array size
N , the average value of β becomes larger. This result can be explained as due to
the reason mentioned in the previous paragraph. In case of N = 200 the average
values of β are smaller than those in other array sizes. This result implies that
the average transient time becomes long in case of array size N = 200. This
result is contradictory to [11] which reports that the average transient time Tave

in rule 110 increases algebraically with array size N , Tave ∝ Nα, with α ≈ 1.08.
In [11] the comparison of periodic configurations is made up to spatial shifts.
Therefore rigorous comparison of periodic configurations might result in different
dependence of transient time on array size from the result in [11].

Next we compare the two evolutions from distinct random initial configura-
tions to confirm the aforesaid guess that 1/f noise in CAs is caused by transient
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Fig. 5. Average of β calculated from the least square fitting of the power spectrum
ln S(f) = α + β ln(f) from f = 1 to f = 10 for 400 random initial configurations as a
function of array size N and the observed time steps T in rule 110

t = 0 ∼ 199 t = 800 ∼ 999

Fig. 6. Space-time patterns of rule 110 from a random initial configuration. The space-
time pattern from 0 to 199 time steps is shown on the left and from 800 to 999 time
steps on the right. Array size is 200. The evolution becomes periodic at 306 time steps
with period 750. Several gliders are moving monotonously in the evolution from 800 to
999 time steps.

behavior. Figure 6 shows a set of space-time patterns from a random initial con-
figuration of 200 cells in rule 110. The evolution from 0 to 199 time steps is shown
on the left and from 800 to 999 time steps on the right. The evolution at first
exhibits transient behavior but becomes periodic at 306 time steps with period
750. The space-time pattern from 800 to 999 time step shows that several gliders
are moving monotonously in periodic background. Figure 7 shows another set
of space-time patterns from another random initial configuration. The evolution
keeps transient behavior at time step t = 999 although it eventually becomes
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t = 0 ∼ 199 t = 800 ∼ 999

Fig. 7. Space-time patterns of rule 110 from other random initial configuration than
the one used in Fig. 6. The space-time pattern from 0 to 199 time steps is shown on
the left and from 800 to 999 time steps on the right. Array size is 200. Several gliders
interact complexly in the evolution from 800 to 999 time steps. The evolution eventually
becomes periodic at time step t = 2416 with period 400.
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Fig. 8. Power spectra of rule 110 from random initial configurations. The left power
spectrum is calculated from the evolution in Fig. 6 and the right one from Fig. 7. The
dashed line represents the least square fitting of the spectrum from f = 1 to f = 10
by lnS(f) = α + β ln f , with β = −0.5059 (left) and β = −1.5159 (right).

periodic at time step t = 2416 with period 400. The space-time pattern from
800 to 999 time step shows that several gliders interact complexly in periodic
background. Figure 8 shows the power spectra calculated from the evolutions
for T = 1000 time steps shown in Fig. 6 and Fig. 7. The left one is calculated
from the evolution shown in Fig. 6 and the right one from Fig. 7. The dashed
line represents the least square fitting of the spectrum from f = 1 to f = 10 by
lnS(f) = α+ β ln f , with β = −0.5059 (left) and β = −1.5159 (right). The left
power spectrum is not considered to be 1/f -type because β is too larger than
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-1, but the right one is. The comparison between these two evolutions suggests
that the difference in the shape of power spectra at low frequencies depends on
the duration of transient behavior.

5 Conclusion

In this research we performed the spectral analysis on the evolution of ECAs
and concluded that rule 110 has 1/f spectra during the longest time steps in
all ECAs. Rule 110 has been expected to be capable of supporting universal
computation [10]. It was proved that rule 110 is computationally universal [12].

The Game of Life (LIFE) is one of the two-dimensional and two-state, nine-
neighbor outer totalistic CAs [13]. Although the rule of LIFE is very simple, it
generates complicated patterns such as a glider. It is supposed that a universal
computer can be constructed on the array of LIFE by considering a glider as a
pulse in a digital circuit. Moreover, the evolution from random initial configura-
tions in LIFE is characterized by 1/f noise [14]. These results suggest that there
is a relationship between computational universality and 1/f noise in CAs.

The hypothesis of ”the edge of chaos” has evoked considerable controversy [15].
This hypothesis says the ability to perform universal computation in a system
arises near a transition from regular behavior to chaotic behavior such as Class
IV CAs. So far various statistical quantities, such as entropy and difference pat-
tern spreading rate, have been proposed to detect Class IV CAs [16]. 1/f power
spectrum might be able to be measurement of Class IV CAs.

We need to find more CAs which exhibit 1/f spectra to confirm the guess
about the relationship between computational universality and 1/f noise in
CAs. But most CA rule spaces except for ECAs are too large to calculate the
power spectra of those rules. So we have searched for two-dimensional two-state
nine-neighbor outer totalistic CA with 1/f spectrum using genetic algorithms
(GAs) [17]. The rule obtained by the search exhibited 1/f spectrum. While the
rule is different in two bits from that of LIFE, its behavior is extremely similar
to that of LIFE, and moreover, there is the same glider as in LIFE. We are
planning to search for other one-dimensional CAs with 1/f spectrum by GAs in
future work.
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Cluj-Napoca, 400084, Romania

moltean@cs.ubbcluj.ro

Abstract. In this paper we suggest the use of light for performing useful
computations. Namely, we propose a special device which uses light rays
for solving the Hamiltonian path problem on a directed graph. The device
has a graph-like representation and the light is traversing it following the
routes given by the connections between nodes. In each node the rays are
uniquely marked so that they can be easily identified. At the destination
node we will search only for particular rays that have passed only once
through each node. We show that the proposed device can solve small
and medium instances of the problem in reasonable time.

1 Introduction

Using the light to perform computations is an exciting idea whose applications
can be already seen on the market.

An important step was made by Intel researchers who have developed the
first continuous wave all-silicon laser using a physical property called the Ra-
man Effect [7,16,17,18]. The device could lead to such practical applications as
optical amplifiers, lasers, wavelength converters, and new kinds of lossless optical
devices.

Another solution comes from Lenslet [13] which has created a very fast proces-
sor for vector-matrix multiplications. This processor can perform up to 8000 Giga
Multiple-Accumulate instructions per second. Lenslet technology has already
been applied to data analysis using k-mean algorithm [15] and video compression.

In this paper we suggest a new way of performing computations by using
some properties of light waves. The idea may be used within a special device for
solving the Hamiltonian path problem.

We are not taking into account the quantum properties of light which have
been used for solving the Traveling Salesman Problem [4,10].

The paper is organized as follows: The Hamiltonian path problem is briefly
described in section 2. The proposed device is presented in section 3. Mathe-
matical background of the labeling system is described in section 3.2. The way
in which the proposed device works is given in section 3.3. A list of components
required by the proposed device is given in section 3.4. Complexity is discussed
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in section 3.5. Suggestions for improving the device are given in sections 3.8 and
3.9. Further work directions are suggested in section 4.

2 The Hamiltonian Path Problem

The description of the Hamiltonian Path (HP) problem for a direct graph is the
following:

Given a directed graph G = (V,E) with |V | = n nodes and a start node
(vstart) and a stop node (vstop), the problem asks to compute is there is a simple
path, beginning with node vstart and ending with node vstop, containing all
nodes exactly once. The output for this decision problem is either YES or NO
depending on whether the Hamiltonian path does exist or not.

The Hamiltonian path problem arises in many real-word applications [3,6].
The problem belongs to the class of NP-complete problems [9]. No polynomial

time algorithm is known for it.
A small instance of this problem was also the first problem solved using a

DNA computer [1].

3 The Proposed Device

Our idea is based on two properties of light:

– The speed of light has a limit. The value of the limit is not very important
at this stage of explanation. What is important is the fact that we can delay
the ray by forcing it to pass through an optical fiber cable of a certain length.

– The ray can be easily divided into multiple rays of smaller intensity/power.

Initially a light ray is sent to the start node. Generally speaking two operations
must be performed when a ray passes through a node :

– The light ray is marked uniquely so that we know that it has passed through
that node.

– The ray is divided into a number of rays equal to the external degree of that
node. Each obtained ray is directed toward one of the nodes connected to
the current node.

At the destination node we will search only for particular rays that have
passed only once through each node.

This section deeply describes the proposed system. First step is to find a
way to mark the signals which passes through nodes such that the interesting
signals can be easily identified at the destination node. The mathematical back-
ground required for this operation is described in section 3.2 and the hardware
implementation of the labeling system is described in section 3.4.
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3.1 Labeling System

At the destination node we will wait for a particular ray which has passed
through all nodes of the graph exactly once. This is why we need to find a
way to label that particular ray so that it could be easily identified.

Actually we are interested in marking all rays which pass through a particular
node with a unique label, such that Hamiltonian path is uniquely identified at
the destination node (vstop).

In the solution proposed in this paper, the rays passing through a node are
marked by delaying them with a certain amount of time. This delay can be easily
obtained by forcing the rays to pass through an optical fiber of a certain length.
Roughly speaking, we will know if a certain ray has traversed a Hamiltonian path
only if its delay (at the destination node) is equal to the sum of delays of all
nodes in that graph. We will also know the particular moment when the expected
ray (the one which has completed a Hamiltonian path) will arrive. In this case
the only thing that we have to do is to ”listen” if there is a fluctuation in the
intensity of the signal at that particular moment. Due to the special properties
of the proposed system we know that no other ray will arrive, at the destination
node, at the moment when the Hamiltonian path ray has arrived.

The delays, which are introduced by each node, cannot take any values. If we
would put random values for delays we might have different rays (which are not
Hamiltonian paths) arriving, at the destination node, in the same time with a
ray representing a Hamiltonian path.

We need only the ray, which has traversed a Hamiltonian path, to arrive in
the destination node at the moment equal to the sum of delays of each node (the
moment when the ray has entered in the start node is considered moment 0).
Thus, the delaying system must have the following property:

Property of the delaying system
Let us denote by d1, d2, ..., dn the delays introduced by each node of the

graph. A correct set of values for this system must satisfy the condition:
d1 + d2 + ...+ dn �= a1 · d1 + a2 · d2 + ...+ an · dn,
where ai (1 ≤ i ≤ n) are natural numbers and cannot be all 1 in the same

time.
If a given value ai is strictly greater than 1 it means that the ray has passed

at least twice through node 1.

3.2 Mathematical Background for the Labeling System

Finding the appropriate labeling system was two steps process. First of all we
have written a computer program which generates this numbers by using a back-
tracking procedure [5]. We also wanted to generate numbers such that the highest
number in a system is the smallest possible. This will ensure that the network is
constructed in an efficient way. The labeling systems generated by our computer
programs are given in Table 1.

From Table 1 it can easily seen these numbers follow a general rule:
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Table 1. The labeling system generated by our backtracking procedure. First column
contains the number of nodes of the graph. The second column represents the labels
applied to nodes.

n Labels (delays)
1 1
2 2, 3
3 4, 6, 7
4 8, 12, 14, 15
5 16, 24, 28, 30, 31
6 32, 48, 56, 60, 62, 63

For a graph with n nodes one of the possible labeling systems is:

2n − 2n−1,
2n − 2n−2,
2n − 2n−3,
... ,
2n − 20.

As the second step we have to prove that the property of delaying system (see
section 3.1) holds for this sequence of numbers.

Actually we have to prove that the equality:

2n − 2n−1 + 2n − 2n−2 + 2n − 2n−3 + ...+ 2n − 20 =

a1 · (2n − 2n−1) + a2 · (2n − 2n−2) + a3 · (2n − 2n−3) + ...+ an · (2n − 20)
(1)

is not possible unless all ai are equal to 1.
The left part of the equality is:

2n − 2n−1 + 2n − 2n−2 + 2n − 2n−3 + ...+ 2n − 20 =
n · 2n − (2n−1 + 2n−2 + 2n−3 + ...+ 20) =
n · 2n − 2n + 1 =
(n− 1) · 2n + 1.

First of all we have to see that the equality does not hold if all ai numbers are
at least 1 and at least one number is strictly greater than 1. If this happens the
2n term will be represented at least n times. But, it must be represented only
n− 1 times (see above).

Thus, if at least one number ai is strictly greater than 1, it means that other
numbers aj must be 0. We will prove that the equality (1) does not hold in this
case too.

As discussed above, if one of the coefficients is 0, at least one of the other
coefficients must be strictly greater than 1. For instance, if a1 is set to 0, it
means that a2 must be set to 3 in order to compensate the missing 2n−1 term.
This is a direct consequence of the fact that 2n−1 = 2 · 2n−2. Of course, we also
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have to take into account that 2n−2 must be represented once. This is why we
have to set a2 to value 3.

If a2 is also 0 we have to set a3 to value 7 (we need 4 · 2n−3 in order to
compensate the missing term 2n−1, we also need 2 · 2n−3 to compensate the
missing term 2n−2 and, of course, the term 2n−3 must be represented 1 time).

As a general idea: if a particular term (2n−j) is missing (the corresponding
coefficient aj is set to 0), it can be compensate by setting one of the next coef-
ficients to a value of at least 3. But, a coefficient set to 0 means that the term
2n is missing once, and by setting another coefficient to at least 3 we will get
at least 2 extra representations for 2n. This will mean that right part of the
equation (1) will be at least (n+ 1) · 2n + 1. But, the left part of the equation is
only (n− 1) · 2n + 1.

With this we have shown that all ai(1 ≤ i ≤ n) must be 1 in order to have
equality in equation (1). For any other values of ai the equality (1) does not
hold.

An important question is whether this system is the minimal possible (the
biggest number is the minimal possible). A partial answer to this question is
given in section 3.5.

Fig. 1. A directed graph with 5 nodes. Start node is 1 and the destination node is 4.
The list of arcs is: (1,3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (5, 2)

3.3 How the System Works

An schematic example of a graph-like system is given in Figure 1.
In the graph depicted in Figure 1 the light will enter in node 1. It will be

delayed with a certain amount of time and then it will be divided into 2 rays
which will be sent to the nodes 3 and 5. In node 3 the ray will be delayed (with
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the amount of time corresponding to node 3) and then it will be sent to node 4.
However, this is not a Hamiltonian path because it has visited only the nodes 1,
3 and 4. The other ray which was sent to node 5 (from node 1) can generate a
Hamiltonian path by following the route 1, 5, 2, 3 4.

Note that there is also a cycle in the graph: 1, 5, 2. The cycle will make
that some particular rays to be trapped within the system. The rays which have
passed once through the previously described cycle are not considered Hamil-
tonian paths because the moments when they arrive at the destination node are
greater than the sum of delays introduced by each node.

The partial paths traversed by rays are given below:

1
1, 3

1, 3, 4
1, 5

1, 5, 2
1, 5, 2, 1
.............{paths starting with 1, 5, 2, 1}
1, 5, 2, 3

1, 5, 2, 3, 4
1, 5, 2, 4

3.4 Hardware Implementation of the Labeling System

For implementing the proposed device we need the following components:

– a source of light (laser),
– Several beam-splitters for dividing light rays into multiple subrays. A stan-

dard beam-splitter is designed using a half-silvered mirror. For dividing a
ray into k subrays we need k − 1 beam-splitters.

– A high speed photodiode for converting light rays into electrical power. The
photodiode is placed in the destination node.

– A tool for detecting fluctuations in the intensity of electric power generated
by the photodiode (oscilloscope),

– A set of optical fiber cables having certain lengths. These cables are used for
connecting nodes and for delaying the signals within nodes. The length of
the cables must obey the rules described in section 3.1. A practical example
is given in section 3.6.

3.5 Complexity

This section answers a very important question: Why the proposed approach is
not a polynomial-time solution for the HP problem?

At the first sight one may be tempted to say that the proposed approach
provides a solution in polynomial time to any instance of the HP problem. The
reason behind such claim is given by the ability of the proposed device to provide
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output to any instance by traversing only once all nodes (O(n) complexity).
This could mean that we have found a polynomial-time algorithm for the HP
problem. A direct consequence is obtaining solutions, in polynomial time, for all
other NP-Complete problems - since there is a polynomial reduction between
them [9].

However, this is not our case. As can be seen from Table 1 the delay time
increases exponentially with the number of nodes. Even if the ray has to traverse
only n nodes (resulting a complexity of O(n)), the total time required by the ray
to reach the destination node increases exponentially with the number of nodes.

There are two direct consequences which are derived from here:

– The length of the optical fibers, used for delaying the signals, increases ex-
ponentially with the number of nodes,

– The intensity of the signal decreases exponentially with the number of nodes
that are traversed.

These two issues are discussed in sections 3.6 and 3.7.

3.6 Problem Size

We are interested in computing the size of the cables required to solve a certain
instance of the problem in a small amount of time. This will give as a rough
indication on the size of the graphs that can be solved using our system in
reasonable time.

This size heavily depends on the accuracy of the measurement tools. The rise-
time of the best oscilloscope available on the market is in the range of picoseconds
(10−12 seconds). This means that we should not have two signals that arrive at
2 consecutive moments at a difference smaller than 10−12 seconds.

Knowing that the speed of light is 3 · 1011m/s we can easily compute the
minimal cable length that should be traversed by the ray in order to be delayed
with 10−12 seconds. This is obviously 0.3 meters.

This value is the minimal delay that should be introduced by a node in order
to ensure that the difference between the moments when two consecutive signals
arrive at the destination node is greater or equal to the measurable unit of 10−12

seconds. This will also ensure that we will be able to correctly identify whether
the signal has arrived in the destination node at a moment equal to the sum of
delays introduced by each node. No other signals will arrive within a range of
10−12 seconds around that particular moment.

Once we have the length for that minimal delay is quite easy to compute the
length of the other cables that are used in order to induce a certain delay.

Recall from section 3.2, Table 1 that a graph with 5 nodes has the following
delaying system:

16, 24, 28, 30, 31.
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From the previous reasoning line we have deduced that the smaller indivisible
unit is 0.3. So, we have to multiply these numbers by 0.3. We obtain:

4.8, 7.2, 8.4, 9.0, 9.3.

These numbers represent the length of the cables that must be used in graph’s
nodes in order to induce a certain delay.

Note that the delay introduced by the cables connecting the nodes was not
taken into account in this example. This is not a limitation of our system. The
cables connecting nodes can be set to have some length which must obey the
property of delaying system (see section 3.1). Note that all cables must have the
same length. In this case if we have a graph with 4 nodes the length of every
cable connecting the nodes must be set to 16 units (the shortest possible - in
order to reduce the costs). The length of cables within the nodes should be 24,
28, 30 and 31 units.

The largest length in this sequence is 9.3 meters. This length is not very big,
but for larger graphs the length of the cables within nodes can be a problem.

Once we have the length for that minimal delay is quite easy to compute the
maximal number of nodes that a graph can have in order to find the Hamiltonian
path in one second. We know the facts:

– the largest delay has the form 2n − 1 (see equation 1),
– the distance traversed by light in 1 second is 3 · 108 meters,
– the shortest delay possible is 0.3 meters.

We simply have to solve the equation:

2n · 0.3 = 3 · 108 (2)

This number is about 33 nodes. However, the length of the optic fibers used
for inducing the largest delay for this graph is huge: about 8 · 1011 meters. We
cannot expect to have such long cables for our experiments.

However, shorter cables (of several hundreds of kilometers) are already avail-
able in the internet networks. They can be easily used for our purpose. Assuming
that the longest cable that we have is about 300 kilometers we may solve in-
stances with about 17 nodes. The amount of time required to obtain a solution
is about 10−6 seconds.

Note that the maximal number of nodes can be increased when the precision
of our measurement instruments (oscilloscope and photodiode) is increased.

Also note that this difficulty is not specific to our system only. Other major
unconventional computation paradigms, trying to solve NP-complete problems
share the same fate. For instance, a quantity of DNA equal to the mass of Earth
is required to solve HP instances of 200 cities using DNA computers [11].

3.7 Amplifying the Signal

Beam splitters are used in our approach for dividing a ray in two or more subrays.
Because of that, the intensity of the signal is decreasing. In the worst case we
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have an exponential decrease of the intensity. For instance, in a graph with n
nodes, each signal is divided (within each node) into n − 1 signals. Roughly
speaking, the intensity of the signal will decrease nn times.

This means that, at the destination node, we have to be able to detect very
small fluctuations in the intensity of the signal. For this purpose we will use
a photomultiplier [8] which is an extremely sensitive detector of light in the
ultraviolet, visible and near infrared range. This detector multiplies the signal
produced by incident light by as much as 108, from which even single photons
can be detected.

3.8 Improving the Device by Reducing the Speed of the Signal

The speed of the light in optic fibers is an important parameter in our device.
The problem is that the light is too fast for our measurement tools. We have
either to increase the precision of our measurement tools or to decrease the speed
of light.

It is known that the speed of light traversing a cable is significantly smaller
than the speed of light in the void space. Commercially available cables have
limit the speed of the ray wave up to 60% from the original speed of light. This
means that we can obtain the same delay by using a shorter cable.

However, this method for reducing the speed of light is not enough. The order
of magnitude is still the same. This is why we have the search for other methods
for reducing that speed. A very interesting solution was proposed in [12,14] which
is able to reduce the speed of light by 7 orders of magnitude. This could help our
mechanism significantly. However, is still a question how to use this idea for our
device because of the complex equipment involved in those experiments [12,14].

By reducing the speed of light by 7 orders of magnitude we can reduce the
size of the involved cables by a similar order. This will help us to solve larger
instances of the problem.

3.9 Improving the Performance of the Device for Particular Graphs

The labeling system proposed in section 3.1 is a general one. It can be used
for any kind of graph (with any number of nodes and arcs). We have shown
that this system has a big problem: the value of the involved numbers increase
exponentially with the number of nodes in the graph being solved.

But, for particular graphs we can find other labeling systems which are not
exponential. For example, the linear graph (see Figure 2 can be solved by our
device by using virtually no delays. In this case the moment when the signal
arrives in the destination node is equal to sum of delays introduced by the
cables connecting the nodes.

Fig. 2. A linear graph with 7 nodes. No delays are required for the nodes of this graph
in order to find an Hamiltonian path
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Finding the optimal labeling system for a particular graph is an interesting
problem which will be investigated in the near future.

3.10 Technical Challenges

There are many technical challenges that must be solved when implementing the
proposed device. Some of them are:

– Cutting the optic fibers to an exact length with high precision. Failing to
accomplish this task can lead to errors in detecting a ray which has passed
through each node once.

– Finding a high precision oscilloscope. This is an essential step for solving
larger instances of the problem (see section 3.6),

– Finding cables long enough so that larger instances of the problem could
be solve. This problem might have a simple solution: the internet networks
connecting the world cities. It is easy to find cables of hundreds of kilometers
connecting distant cities. This will help us to solve instance of more than
10 nodes. However, this solution introduces a difficulty too: cables of certain
lengths must be found or the system must be rescaled in order to fit the
existing lengths.

4 Conclusions and Further Work

The way in which light can be used for performing useful computations has been
suggested in this paper. The techniques are based on the massive parallelism of
the light ray.

It has been shown the way in which a light-based device can be used for
solving the Hamiltonian path problem. Using the today technology we can build
a light-based device which can solve small and medium size instances in several
seconds.

Further work directions will be focused on:

– Implementing the proposed hardware,
– Finding optimal labeling systems for particular graphs. This will reduce the

length of the involved cables significantly,
– Finding other non-trivial problems which can be solved by using the pro-

posed device,
– Finding other ways to introduce delays in the system. The current solution

requires cables that are too long and too expensive,
– Using other type of signals instead of light. A possible candidate would be

electric power,
– Finding other ways to implement the system of marking the signals which

pass through a particular node. This will be very useful because the currently
suggested system, based on delays, is too time consuming.
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Abstract. This paper investigates an information-theoretic design prin-
ciple, intended to support an evolution of a memory structure fitting a
specific selection pressure: potential information transfer through the
structure. The proposed criteria measure how much does associativity in
memory add to the information transfer in terms of precision, recall and
effectiveness. Maximization of the latter results in holographic memory
structures that can be interpreted in self-referential terms. The study in-
troduces an analogy between self-replication and memory retrieval, with
DNA as a partially-associative memory containing relevant information.
DNA decoding by a complicated protein machinery (“cues” or ”keys”)
may corresponds to an associative recall: i.e., a replicated offspring is
an associatively-recalled prototype. The proposed information-theoretic
criteria intend to formalize the notion of information transfer involved in
self-replication, and enable bio-inspired design of more effective memory
structures.

1 Introduction

Bio-inspired models have been suggested and used in many areas of Uncon-
ventional Computing: parallel processing such as Cellular Automata (CA) and
DNA computation; distributed storage and transmission: e.g., neural networks
and associative memory; search and optimization: e.g., genetic algorithms and
ant colony optimization (ACO). New metaphors are discovered and applied at an
increasing pace, improving computational models in terms of robustness, adap-
tivity and scalability. However, there is a certain lack of a unifying methodology,
or at least a set of guiding principles, underlying many recent developments.
This is unsatisfactory not only from a methodological, but also from a pragmatic
point of view: if some generic principles are not utilized then specific solutions
are likely to be suboptimal.

Existence of such core principles may be supported by an observation that
most of the bio-inspired models listed above do not fit into a particular cate-
gory of conventional computing (memory, communication, processing), but cope
with multiple aspects. For instance, CA were shown by Langton [18] to support,
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under certain conditions (the edge of chaos), three basic operations of informa-
tion storage, transmission, and modification, through static, propagating and
interacting structures (blinkers, gliders, collisions). ACO algorithms also com-
bine distributed memory, distributed transmission and distributed search, em-
ploying stigmergy — the process by which multiple ant-like agents indirectly
interact through changes in their environment caused by pheromone deposits
[4,5] — and resulting in emergence of optimal solutions. In other words, these
fundamental aspects of dealing with information are fused together within these
bio-inspired approaches, making them less brittle and more scalable than con-
ventional systems. One compelling explanation is that the motivating biological
systems (ranging from cellular tissues to ant colonies) co-evolved the comput-
ing components rather than assemble the overall architecture out of separately
designed parts [11].

The main question then becomes what are the core principles that inter-
relate memory, communication, and processing in evolvable computational sys-
tems? Answering this question from an information-theoretic viewpoint may
also improve comparability of different bio-inspired approaches. In this paper,
we propose an information-theoretic design principle, intended to support an
evolution of a memory structure fitting a specific selection pressure: potential
information transfer through the structure. In doing so we minimize architec-
tural assumptions about memory or processor structures, hoping instead that
such dependencies emerge as a result of the optimization of the information
processing dynamics. Our preliminary studies, reported here, indicate that the
proposed principle is capable of clearly identifying the range and information
dynamics of possible memory structures in a very general sense, enabling design
of optimal memory.

The following Section points out some relevant background material on un-
conventional memory organization, as well as intrinsic information-theoretic fit-
ness criteria used in evolvable computational systems. Section 3 describes the
proposed measure, followed by experimental results (Section 4) and conclusions
(Section 5).

2 Background and Motivation

Moskowitz and Jousselin [20] have shown that, in a general algebraic sense, the
nature of the operations carried out by a computer processor actually determine
the structure of the computer memory. In particular, they highlighted the hidden
group structure of the address space, and pointed out that “when the integer
addition law is used to manipulate addresses, this space is a cyclic group, and
memory is seen as a linear array”. When another composition law is used (e.g.,
a non-commutative address composition), a hypercubic memory structure fits
more, greatly reducing complexity of computations.

Another related concept is associative or content-addressed memory: a mem-
ory organization in which the memory is accessed by its content rather than an
explicit address. Reference clues or keys are “associated” with actual memory
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contents until a desirable match (or set of matches) is found. A well-known exam-
ple is a self-organizing map (SOM or Kohonen network). It can be interpreted
as an associative memory which encodes the input patterns within the nodes
of the network (the neural layer), in the form of weight (codebook) vectors of
the same dimension and nature as the input patterns [17]. When a partial or
corrupted pattern of data (a sensory cue) is presented in the form of a key input-
vector, the rest of the pattern (memory) is associated with it. A characteristic of
SOM-based associative memory is its self-organizing ordering: neighboring nodes
encode similar codebook vectors, preserving topology: neurons that are closer in
the neural layer tend to respond to inputs that are closer in the input space. A
related approach is advocated by Kanerva [15,16]: a Sparse Distributed Memory
(SDM) which is a content addressable, associative memory technique relying on
close memory items clustered together: while perceived data sparsely distrib-
ute themselves over multiple storage locations, the outcome is a fusion of this
distribution. In the auto-associative version of SDM the memory contents and
their addresses are from the same space and may be used alternatively. Another
well-known example of auto-associative memory reproducing its input pattern
as output is the Hopfield neural network [10].

Importance of memory access is discussed by Goertzel [6], who pursues “not
a model of how memories are physically stored in the brain or anywhere else,
but rather a model of how memory access must work, of how the time required
to access different memories in different situations must vary”. This pursuit led
towards a structurally associative memory (STRAM), based on the idea that “if
x is more easily accessible than y, those things which are similar to x should in
general be more easily accessible than those things which are similar to y” [6].
Goertzel sketched a way of mapping a weighted graph describing STRAM to a
physical memory M , by assigning to each pair of elements (x, y) stored by M a
distance DM (x, y) measuring the difficulty of locating x in memory given that
y has very recently been located. It was suggested that the distance DM (x, y) is
approximated as a number of links along the shortest path between the graph
nodes corresponding to x and y.

It is worth pointing out that our approach does not intend to present just
a new measure of associativity or information transfer involved in memory
operations, but rather identify an information-theoretic principle contributing
to a general methodology. Such a methodology may go beyond computational
aspects, including sensing, actuation, and networking in distributed systems,
co-evolving under multiple design/selection pressures. We intend to follow the
proposal on information-driven evolutionary design which suggested to use fit-
ness functions according to generic information-theoretic criteria [25,26,13,14].
The identification of possible intrinsic fitness criteria is also related to the work
of Der et al. on self-organization of agent behaviors from domain-invariant prin-
ciples, e.g., homeokinesis [3].

An example of a selection pressure is the acquisition of information from
the environment: there is some evidence that pushing the information flow to
the information-theoretic limit (i.e., maximization of information transfer in
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perception-action loops) can give rise to intricate behaviour, induce a neces-
sary structure in the system, and ultimately be responsible for adaptively re-
shaping the system [12,13,14]. Other important selection pressures applicable
to distributed systems include stability of self-organizing hierarchies [22]; effi-
ciency of multi-cellular communication topologies [23]; efficiency of locomotion
and distributed actuation [25,29]. Identifying a selection pressure on potential
information transfer involved in memory recall would allow us to contribute to
the general methodology of information-driven evolutionary design.

3 Information Transfer: Precision and Recall

Since our task is to identify a very generic principle, we choose to abstract away
from implementation details and consider instead an unconstrained deterministic
function f from two equally distributed random variables K and X to a random
variable Y . The variable K is intended to serve as a “key” or “cue” in accessing
the memory X , retrieving, as a result of the mapping f , the outcome Y , i.e.,
Y = f(K,X). It is important to realize that while we interpret K, X and Y as
key, memory and outcome, we do not structurally constrain the variables and
the mapping: e.g., there is no requirement that any location x in memory X is
accessible by a unique key k ∈ K, etc.

The first constraint that we impose is the criterion:

maximization of P = I(X ;K|Y ) , (1)

where I(A;B) denotes the mutual information between A and B:

I(A;B) =
∑
a∈A

∑
b∈B

P (a, b) log
P (a, b)
P (a)P (b)

, (2)

where P (a) is the probability that A is in the state a, and P (a, b) is the joint
probability. The criterion (1) maximizes the conditional mutual information be-
tween key and memory, given the outcome. First of all, we need to clarify that,
although K and X are independent and, therefore, mutual information I(X ;K)
is zero, the conditional mutual information I(X ;K|Y ) may well be positive. This
is analogous to the example of a binary symmetric channel with input X , noise
K, and output Y , described by MacKay [19] (we altered the variables names
here to avoid confusion): mutual information I(X ;K) = 0 since input and noise
are independent, but I(X ;K|Y ) > 0, because “once you see the output, the
unknown input and the unknown noise are intimately related!” [19]. Similarly,
the criterion (1) is applied once the outcome is obtained, which means that a
possible association between memory and key has been made.

Secondly, we draw an analogy with well-known information retrieval metrics:
precision and recall. Precision is a measure of usefulness or soundness of the
outcome retrieved in response to a query, and is measured as a fraction of the
relevant and retrieved items within the retrieved items (aiming at “nothing but
the truth”). Recall is a measure of relevance or completeness of the retrieved
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outcome, and is measured as a ratio of the relevant and retrieved items over the
relevant items (aiming at “the whole truth”). A probabilistic interpretation is
possible as well [7]: precision may be defined as the conditional probability that
an object is relevant given that it is returned by the system, while the recall
is the conditional probability that a relevant object is returned: precision =
P (relevant|returned), and recall = P (returned|relevant).

Intuitively, the criterion (1) captures the potential P of precision-driven in-
formation transfer. To formalize this intuition, let us apply the chain rule for the
mutual information:

I(X ;Y,K) = I(X ;Y ) + I(X ;K|Y ) ,

producing
P = I(X ;K|Y ) = I(X ;Y,K)− I(X ;Y ) . (3)

The alternative representation (3) can be interpreted as follows: how much does
a key add to precision of the outcome by associating with memory. The equa-
tion (3) contrasts two information transfers: one, I(X ;Y ), does not use associa-
tivity, while the other, I(X ;Y,K), incorporates it. The difference between the
two transfers captures, we believe, the potential information gain in precision.
Another useful representation of the criterion (1) can be obtained in terms of
entropies H(·), joint entropies H(·, ·), and conditional entropies H(·|·):

H(A) = −
∑
a∈A

P (a) logP (a) , (4)

H(A,B) = −
∑
a∈A

∑
b∈B

P (a, b) logP (a, b) , (5)

H(B|A) = H(A,B)−H(A) , (6)

where P (a) is the probability that A is in the state a, P (b) is the probability
that B is in the state b, and P (a, b) is the joint probability. We begin by applying
the identity

I(X ;K|Y ) = H(X |Y )−H(X |K,Y )

to the right-hand side of the criterion (1). It yields

P = I(X ;K|Y ) = H(X |Y )−H(X |K,Y ) =

H(X |Y )− [H(X,Y,K)−H(K)−H(Y |K)] =

H(X |Y )−H(X,Y,K) +H(K) + [H(K,Y )−H(K)] =

[H(X,Y )−H(Y )]−H(X,Y,K) +H(K,Y ) .

where the last three steps used relationshipsH(X |K,Y ) = H(X,Y,K)−H(K)−
H(Y |K), H(Y |K) = H(K,Y ) − H(K) and H(X |Y ) = H(X,Y ) − H(Y ) re-
spectively. A further reduction is possible for deterministic functions, where
H(X,Y,K) is a constant, making the criterion (1) equivalent to

maximization of P̃ = H(X,Y )−H(Y ) +H(K,Y ) . (7)
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The measure P̃ may, of course, be rewritten as follows:

P̃ = H(X |Y ) +H(K,Y ) = H(X,Y ) +H(K|Y ) . (8)

At this stage we would like to introduce another criterion. We consider

maximization of R = I(Y ;K|X) = I(Y ;X,K)− I(Y,X) . (9)

Intuitively, R measures how much a key is necessary to identify the output of
the mapping, given the memory. The criterion (9) captures the potential R of
information transfer involved in the memory recall, and aims to maximize the
difference between associative and non-associative information transfer. Using
similar unfolding, we obtain

R = I(Y ;K|X) = H(Y |X)−H(Y |K,X) =

H(Y |X)− [H(Y,X,K)−H(K)−H(X |K)] =

H(Y |X)−H(Y,X,K) +H(K) + [H(X,K)−H(K)] =

[H(Y,X)−H(X)]−H(Y,X,K) +H(X,K) .

Since for deterministic functions the last three entropies of the right-hand side are
constants (andH(Y,X,K) = H(X,K) anyway), maximization ofR is equivalent
to

maximization of R̃ = H(X,Y ) . (10)

It should be noted that since Y = f(K,X), the expression for R̃ is dependent
on K.

The overall effectiveness of information retrieval is typically defined as the
harmonic mean (the reciprocal of the arithmetic mean of the reciprocals) of
recall and precision — hence, we suggest the criterion:

maximization of E =
2

1
P + 1

R
=

2PR
P +R , (11)

fusing together the potential information gains in both precision and recall.
In order to highlight different roles played by K and X , we consider here

scenarios with varying sizes ‖K‖ and ‖X‖, interpreted in the context of several
examples: (a) catalog/book indexing and search; (b) pattern association using a
neural network; (c) decoding of genotype (DNA) by proteins. The scenarios are
as follows:

(S1) ‖K‖ # ‖X‖ and ‖X‖ ≈ ‖Y ‖ , (S2) ‖K‖ ≈ ‖X‖ ≈ ‖Y ‖ ,
(S3) ‖K‖ $ ‖X‖ and ‖X‖ ≈ ‖Y ‖

where ‖ ◦ ‖ is the cardinal number of the set ◦ (in our case, simply the number
of its elements). In the example (a), a library catalogue is a database containing
records indexed by the authors, titles, subjects, etc. The explicit “cue” is the
key, using which a set of catalogue items Y ′ ⊆ Y can be found as a result of a
query. Typically, ‖K‖ # ‖X‖, while ‖Y ‖ ≈ ‖X‖: this is our first scenario (S1).
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Similarly, a book can be indexed by associating its content (e.g., pages) with
keywords. In this case, ‖K‖ # ‖X‖ as well, since there may be more keywords
than pages, while ‖Y ‖ ≈ ‖X‖ as the number of retrieved pages may approach
their total number. However, the scenario (S2) pushes the scenario (S1) to the
extreme by restricting the number of possible keys (e.g., a limit on queries), while
the memory size is unchanged: ‖K‖ ≈ ‖X‖. This represents a more challenging
case with respect to the precision as the relevant items are harder to find.

The example (b) involves an artificial neural network, e.g., a self-organizing
map (SOM) implementing associative memory, briefly discussed in section 2.
Each neuron in memory (a network node) encodes a retrievable pattern, hence
‖Y ‖ ≈ ‖X‖. Of course, memory updates would lead to an increase in the over-
all number of returned patterns, highlighting the distinction between cumulative
memory capacity and memory size. The SOM handles multiple cues/keys as par-
tial or corrupted patterns of data, associating them with the memory, implying
‖K‖ # ‖X‖. This also concurs with the first scenario (S1). Again, restricting
the number of possible keys while keeping the memory size is unchanged (the
scenario (S2)) would challenge the system in terms of the precision.

The third scenario (S3) may correspond to an auto-associative neural network
such as the Hopfield network [10] or a Sparse Distributed Memory [15]. A key
is interpreted simultaneously by all neurons which interact by updating their
weights until a stable network state is reached: this attractor then represents the
network output associated with the key. In this case, ‖X‖ # ‖Y ‖ since there
is only a limited number of attractor states supported by the network, while
‖K‖ $ ‖X‖ due to high-dimensionality of memory. Interestingly, restricting
the memory (reducing ‖X‖) would challenge precision again, approaching the
scenario (S2) from another direction.

Finally, we consider the case (c) when a genotype (DNA) is decoded by pro-
teins. An individual DNA can be interpreted as associative memory in the sense
that it contains potential information relevant to the niche occupied by the indi-
vidual’s species. As pointed out by Adami [1], “If you do not know which system
your sequence refers to, then whatever is on it cannot be considered information.
Instead, it is potential information (a.k.a. entropy)”. Decoding a DNA involves a
complicated protein machinery (the key), and may corresponds to an associative
recall. In this model, a replicated offspring is an associatively-recalled prototype.
In the next section we shall interpret all three scenarios within this analogy.

4 Results

The experimental setup is very simple: we intend to satisfy our criteria (1), (9),
and (11) by varying possible deterministic functions Y = f(K,X) over finite
size domains K, X and Y , for the scenarios (S1), (S2) and (S3). In particular,
we consider three sets of integers {1, . . . , ‖K‖}, {1, . . . , ‖X‖} and {1, . . . , ‖Y ‖},
and vary their sizes ‖K‖, ‖X‖ and ‖Y ‖ between experiments. For each exper-
iment, we search for deterministic mappings Y = f(K,X) which maximize P ,
or R, or E — repeating the search for each of these criteria. We used a simple
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genetic algorithm to evolve solutions to the maximization problems. The initial
population is generated by random mappings Y = fi(K,X), for a sufficiently
large number of individual mappings, e.g. 1 ≤ i ≤ 1000. At each generation, the
mappings are evaluated in terms of the criterion in point (either P , or R, or E).
We have chosen a generation gap replacement strategy (the entire old popula-
tion is sorted according to the fitness, and the best 10% are chosen for direct
replication in the next generation, employing an elitist selection mechanism),
and the multiple-point crossover. We also ensure that the mutation results in a
unique individual by re-applying this operator if necessary.

Visualizing evolved mappings f is not revealing, as can be observed from
Figure 1. We plot instead an analogue of a 2-dimensional contour, but rather
than simply using contours, we connect, for a given height y ∈ Y , all points
(k, x) ∈ K ×X which agree either on k or on x, producing a partial grid. For
example, if there are entries 7 = f(1, 4), 7 = f(3, 4), and 7 = f(1, 6), we connect
points (1, 4) and (3, 4) as they represent the same memory x = 4, as well as
points (1, 4) and (1, 6) sharing the same key k = 1. A grid-contour combines
grids for all values of y ∈ Y by “overlaying” the grids for all values y.

A random mapping (the zero hypothesis) has no discernable structure for
all scenarios (e.g., Figure 2). Let us focus initially on the scenario (S1). A P-
maximizing mapping for this scenario is a structure with dominant horizontal
lines (Figure 3). Each horizontal reflects the fact that in the evolved mapping,
the same memory is recalled if multiple different keys are associated with it. This,
in the context of DNA decoding, corresponds to conservation of DNA (memory)
and its robustness to possible decoding errors (multiple keys), ensuring high pre-
cision. A R-maximizing mapping maintains the horizontal lines but introduces
some vertical lines (Figure 4). Each vertical line means that a key recalls the
same content even if associated with different memories. In the context of DNA
decoding, this would correspond to junk DNA: redundant code which does not
differentiate between offsprings and ensures high recall. Importantly, the effec-
tiveness criterion E maintains the horizontal lines (robust DNA) but eliminates
the vertical lines (no junk DNA), as shown in Figure 3. On the other hand, min-
imization of E does the opposite, producing a grid-like structure, i.e., for every
association (k1, x1) there exists an association (k2, x2) such that either k1 = k2
or x1 = x2.

The scenario (S2) pushes the observed tendencies to their limits. A P-maxi-
mizing mapping for this scenario is a structure with no lines (Figure 5). There are
no entries which share either a key or memory — in other words, both key and
memory are necessary. Such a holographic outcome illustrates the full precision
of associative memory (a perfectly succinct DNA). An R-maximizing mapping
has some vertical lines (Figure 6), suggesting that some junk DNA is possible
even in the highest recall case. This can be interpreted as a tendency towards
the dominance of precision over recall, i.e., robustness of DNA at the expense
of redundancy. However, the effectiveness criterion E eliminates redundancy and
results in the holographic structure (Figure 5). This mapping implements a fully
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associative memory, where for every pair of a key and memory, fixing a key k
and varying memory x (or vice versa) results in a different outcome y = f(k, x).

The results for the scenario (S3) are not surprising: mappings maximizing P ,
R and E produce structures with only vertical lines. In the context of DNA de-
coding, this would correspond to highly redundant and error-prone DNA struc-
tures. This model would work for reproduction if different arrays collectively
store information (as in an SDM or Hopfield network) “retrieving” offspring as
a composite result of data fusion, e.g. genetic cross-over.
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Fig. 1. An evolved mapping: scenario (S2)

A holographic mapping Y = f(K,X) implementing fully associative memory
in the scenario (S2) (Figure 5) can be interpreted in self-referential terms. Self-
referentiality has many interpretations, ranging from programming data struc-
tures (a self-referential structure contains a pointer to a structure of the same
type) to cognitive neuroscience: the self is a cognitive structure with special
mnemonic abilities, leading to “the enhanced memorability of material processed
in relation to self” [8,27], suggesting that a self-referential memory — a memory
about the self — is not ordinary. According to the well-known interpretation of
Hofstadter [9], a self-referential system can be characterised by emergent behav-
iour and tangled hierarchies exhibiting Strange Loops: “an interaction between
levels in which the top level reaches back down towards the bottom level and
influences it, while at the same time being itself determined by the bottom
level”. We shall adopt a weaker interpretation of self-referential memory: the
memory using a model of itself. This limited a-model-within-the-model view is
not intended to preclude emergence of tangled hierarchies, or references to the
cognitive self of the agent using this memory.
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Fig. 2. Grid-contour of a random mapping: scenario (S2)
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Fig. 3. Grid-contour of a P-maximizing mapping, as well as an E-maximizing mapping:
scenario (S1)



238 M. Prokopenko, D. Polani, and P. Wang

-1

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60

M
em

or
y 

X

Key K

Fig. 4. Grid-contour of a R-maximizing mapping: scenario (S1)
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Fig. 5. Grid-contour of a holographic P-maximizing mapping, as well as an E-
maximizing mapping: scenario (S2). Its 3-dimensional counterpart is shown in Figure 1.
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Fig. 6. Grid-contour of a R-maximizing mapping: scenario (S2)

We begin by observing that, on the one hand, for y1,1 = f(k1, x1) and
y1,2 = f(k1, x2) (i.e., the same key and varying memory), the outcomes dif-
fer: y1,1 �= y1,2. This means that every memory is sufficiently sensitive to its own
content/location, and there is no redundant information in the associated key:
the difference in the recall is due to different memory. On the other hand, for
y1,1 = f(k1, x1) and y2,1 = f(k2, x1) (i.e., varying key and the same memory),
the outcomes differ as well: y1,1 �= y2,1. This means that every key is sufficiently
informative to produce different outcomes upon association with the same mem-
ory. In other words, every memory content is sufficiently sensitive to each key
(as well as to its content/location), and therefore, encodes information about
all possible keys. If the memory was simply mirroring each associated key, it
would not be sensitive to its own content/location. Hence, each memory content
uniquely encodes information about all possible keys, e.g., in an array of per-
muted keys. This information per se is a memory model. Hence, each memory
content maintains a possible model of itself. We believe that it is precisely this
self-referentiality that leads to holographic-ness and optimizes effectiveness of
the considered information transfer in terms of precision and recall. The self-
referentiality emerges under the pressures imposed by restricting the number
of queries and outcomes to the memory size: the scenario (S2). If one of these
pressures is relaxed, self-referentiality is not needed and a memory does not have
to encode information about all possible keys: hence, the presence of horizon-
tal lines in the optimal structures for the scenario (S1), or vertical lines for the
scenario (S3).
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5 Discussion and Conclusions

The evolved mappings Y = f(K,X) maximize precision, recall and effectiveness
of the potential information transfer throughout associative memory. Maximiza-
tion results in holographic structures that can be interpreted in self-referential
terms. On the contrary, minimization of the proposed criteria result in full-grid
structures which do not require associativity as it does not affect the involved
information transfer.

It was conjectured (e.g., [21,24]) that the degree of self-referentiality employed
by a self-replicating multi-cellular organism is related to efficiency of its self-
inspection and self-repair — and may be quantitatively measured in order to
evolve more efficient processes. This conjecture was tested in this work in terms
of memory structures and the information transfer. Continuing our analogy with
DNA as an associative memory, it is interesting to observe that real-life examples
of DNA are not approaching the maximum information transfer, as evidenced
by their non-perfect error recovery and significant redundancy. Thus, in terms of
self-replication, the maximum potential is not realized — it would require higher
precision and higher recall, culminating in a perfectly-associative memory. In-
terestingly, another extreme, lower precision and/or lower recall, can be pointed
out already. We believe that a suitable example is the self-replication mechanism
exhibited by mineral crystals in the absence of biological enzymes, as advocated
by Cairns-Smith [2]: clay crystals can store information as a pattern of inho-
mogeneities that are propagated from layer to layer, with few errors; they can
reproduce by random fragmentation; and they can express a variety of morpho-
logical phenotypes. Following this intuition, Schulman and Winfree recently pro-
posed a method of error-correcting self-replication that works by similar growth
and fragmentation of algorithmic DNA crystals [28]: “crystal growth extends
the layers and copies the sequence of orientations, which may be considered its
genotype. . . . splitting of a crystal can yield multiple pieces, each containing at
least one copy of the entire genotype”. Such self-replication can be considered as
non-associative memory recall, where a key is not necessary at all, and neither
the point of crystal fragmentation nor surrounding environmental conditions
are important. In other words, Cairns-Smith model of crystal self-replication is
near the low-precision and low-recall extreme, while a self-referential associative
memory would implement the highest-effectiveness case.

Adami advocated the view that “evolution increases the amount of informa-
tion a population harbors about its niche” [1]. The information-theoretic criteria
proposed in this work may further formalize the notion of information transfer
involved in self-replication, and enable bio-inspired design of more effective mem-
ory structures.
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Abstract. In this paper, we continue the study of Bio-Turing machines
introduced in [1]. It was proved in [1] that using two differentiated cells,
and using antiport rules of weight 2, one can recognize the family 1RE.
We show here that with just one differentiated cell, 1RE can be char-
acterized, by using antiport rules of weight 2, or by using symport rules
of weight 3. We also prove that RE can be characterized using arbitrary
alphabets, using 2 differentiated cells, and antiport rules of weight 2.
Finally, we examine the computational power when there are no differ-
entiated cells and show that non-regular languages can be accepted.

1 Introduction

Bio-Turing machines were introduced by F.Bernardini et al in [1]. The motivation
came from the observation that the notion of a “cell” used in Turing machines is
very restricted and local. So it is natural to consider Turing machines where the
cells are “real cells”, that is, membrane containing multisets of objects, arranged
in a linear manner. The objects evolve by means of symport/antiport rules [5]
which is well known in membrane computing. In some sense, we have a tissue-like
system, but we have an “infinite tape”, hence an infinite string of membranes,
and no interaction with the environment.

The intuition is that the tape of the machine has first k cells (the tape is
finite to the left and infinite to the right) differentiated. They have different
contents and different rules. All other cells are non-differentiated, which have
the same contents and rules. An input is provided in the form of symbol objects
introduced in first cells of the tape. The string of these symbols is accepted if the
computation halts. It was known that these devices are universal. More details
and some examples can be found in [1].

This paper is organized as follows: We give some preliminaries in Section 2. In
Sections 3 and 4, we recall the definition of bio-Turing machines and investigate
the computational power while using (i) a single differentiated cell, (ii) two
differentiated cells and arbitrary alphabet, and (iii) no differentiated cells.
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2 Preliminaries

For the basic elements of formal language theory needed, we refer to any mono-
graph in this area, and the details related to membrane computing can be found
in [6]. We just list a few notions and notations here.

By REG,CF,CS,RE we denote the families of regular, context-free, context
sensitive and recursively enumerable languages respectively. If the languages are
over alphabets with at most n ≥ 1 symbols, then we write nREG, nCF, nCS,
nRE, respectively.

As in [1], we consider one membrane cells, communicating through sym-
port/antiport rules. For uniformity, we use only antiport rules, of the form
(i, x; y, j) where i, j are labels of cells and x, y are multisets of symbol-objects,
with the meaning that, the objects indicated by x pass from cell i to cell j and,
at the same time, the objects indicated by y pass from cell j to cell i. One of the
multisets x, y can be empty, and this corresponds to the case of a symport rule.
The maximal length of x or y is called the weight of the rule (i, x; y, j).

The proofs about membrane systems in this paper are based on the concept
of Minsky’s register machine [4]. Such a machine runs a program consisting
of numbered instructions of several simple types. Several variants of register
machines with different number of registers and different instruction sets were
shown to be computationally universal (e.g., see [4]).

An n-register machine is a construct M = (n,H, l0, lh, I) , where:

– n is the number of registers,
– H is the set of instruction labels,
– l0 is the initial label,
– lh is the final label, and
– I is a set of labelled instructions of the form li : (op (r) , lj , lk), where op (r)

is an operation on register r of M , li, lj, lk are labels from the set H (which
labels the instructions in a one-to-one manner),

The machine is capable of the following instructions:

(ADD(r), lj , lk): Add one to the contents of register r and proceed to instruc-
tion lj or to instruction lk; in the deterministic variants usually considered
in the literature we demand lj = lk.
(SUB(r), lj , lk): If register r is not empty, then subtract one from its contents
and go to instruction lj , otherwise proceed to instruction lk.
halt: Stop the machine. This additional instruction can only be assigned to
the final label lh.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : Nα → Nβ; starting with (n1, . . . , nα) ∈
Nα in registers 1 to α, M has computed f (n1, . . . , nα) = (r1, . . . , rβ) if it halts
in the final label lh with registers 1 to β containing r1 to rβ . If the final label
cannot be reached, then f (n1, . . . , nα) remains undefined.

A deterministic m-register machine can also analyze an input (n1, . . . , nα) ∈
Nα

0 in registers 1 to α, which is recognized if the register machine finally stops
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by the halt instruction with all its registers being empty. If the machine does
not halt, the analysis was not successful. In their non-deterministic variant, n-
register machines can compute any recursively enumerable set of non-negative
integers (or of vectors of non-negative integers). Starting with all registers being
empty, we consider a computation of the n-register machine to be successful, if
it halts with the result being contained in the first (β) register(s) and with all
other registers being empty.

A register machine can also be used for defining a language, in the following
way. If V = {a1, . . . , ak}, then each string w ∈ V ∗ can be interpreted as a
number in base k + 1. Specifically, if w = ai1ai2 . . . ain , 1 ≤ ij ≤ k, 1 ≤ j ≤ n,
then val(w) = i1(k + 1)n−1 + . . .+ in−1(k + 1) + in. Then, we have:

Proposition 1. If L ⊆ V ∗, card(V ) = k, L ∈ RE, then a 3-register machine
M exists such that for every w ∈ V ∗ we have w ∈ L if and only if M halts when
starting with valk+1(w) in its first register; in the halting step, all registers of
the machine are empty.

3 Bio-Turing Machines

We recall the definition from [1]. A bio-Turing machine is a construct

Π = (O, $, k, w1, . . . , wk, w,R)

where: (i) O is an alphabet, (ii) $ is a special symbol not in O, used as an end
marker, (iii) k ≥ 1 is the degree of the machine, (iv) w1, . . . , wk are strings
over O, representing the initial contents of the first k cells, (v) w is the content
of cells k + 1, k + 2, . . . (the same for all cells from cell k + 1 to infinity), and
(vi) R is a finite set of rules of the following two types: (a) (i, x; y, i + 1), for
1 ≤ i ≤ k, x, y ∈ O∗, and (b) (∗, x; y, ∗+ 1), for x, y ∈ O∗.

The tape of the machine is bounded to the left and infinite to the right. We
call the first k cells differentiated, they have different contents and rules, while
all other cells are non-differentiated, they have the same contents and rules. Any
rule of the form (∗, x; y ∗+1) can be used to exchange the multisets x, y between
cells j, j + 1 with j > k.

The input string w = ai1 . . . ain is introduced in the first n cells and the end
marker $ in cell n+ 1. From the initial configuration the computation proceeds
as usual in membrane computing, viz., by using the rules from each cell in a
non-deterministic maximally parallel way. If the computation halts, then the
input string w = ai1 . . . ain is accepted.

The language of all strings recognized by the machine Π is denoted by L(Π).
The family of all languages recognized by bio-Turing machines with at most
k differentiated cells and using the rules of weight at most r is denoted by
LTPk(antir). If any of the parameters k, r is not bounded, it is replaced with ∗.
When considering languages over an alphabet with at most n ≥ 1 symbols we
denote the corresponding family by nLTPk(antir). It has been proved in [1] that
1RE = 1LTPk(antir), k, r ≥ 2.
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4 Universality Results

We first show that universality can be obtained with just one differentiated cell,
and antiport rules of weight 2. In the proofs of Theorems 1 and 2, we use a register
machineM = (m,H, l0, lh, I). Adding a new register to M , which we call register
0, as well as two new instructions s0 : (SUB(0), s1, l0) and s1 : (ADD(1), s0),
where s0, s1 are new labels, we obtain a new register machineM ′. Let us consider
M ′ = (m+1, H∪{s0, s1}, s0, lh, I ′) and assume that we start with some number
n in register 0, while all other registers are empty. Using instructions s0, s1, the
number n is shifted to register 1. It follows that N(M) = N(M ′), and so, we
can follow the instructions of M , never again looking at register 0.

Theorem 1. 1RE = 1LTPk(antir) for all k ≥ 1, r ≥ 2.

Proof. Given the register machine M as above, let us construct a bio-Turing
machine Π which recognizes an

0 iff n ∈ N(M). Take

Π = (O, $, 1, ded′ed′′e′′, g2z2w′, R)

where

O = E ∪ {a0, g, d, e, d
′, e′, d′′, e′′, z},

E = {ai | 1 ≤ i ≤ m} ∪ {li, l′i, l′′i , l′′′i , Li | 0 ≤ i ≤ h}

and w′ consists of symbols of E once. Thus, the initial configuration looks like :

a0ded
′e′d′′e′′ a0ggzzw

′ a0ggzzw
′ . . . a0ggzzw

′ $ggzzw′ ggzzw′ . . . ggzzw′ . . .

The set of rules are as follows:

1 (∗, λ;x, ∗ + 1), x ∈ {a0, $} 2 (1, λ; a0, 2)
3 (1, de; $, 2) 4 (∗, d;λ, ∗+ 1)
5 (∗, e;λ, ∗+ 1) 6 (∗, λ; dα, ∗ + 1), α ∈ E
7 (∗, λ; eα, ∗+ 1), α ∈ E 8 (1, d′e′; de, 2)
9 (1, d′′; d′l0, 2) 10 (1, e′′; e′l′0)
11 (1, d′′; d′g, 2) 12 (1, e′′; e′g, 2)
13 (1, g; z, 2) 14 (z, 1; g, 2)

1. Initialization : Bringing in all copies of a0 inside cell 1.
– We plan to simulate the register machine in cell 1. To this end, we first

bring all the a0’s into cell 1. This is done by using the rules 1 and 2.
This makes all the a0’s move into cell 1.

– When $ arrives in cell 1, we know that the entire string has moved into
cell 1. After this, we start moving all the necessary symbols required for
simulation into cell 2 from the infinitely many cells to the right. This is
done by using rule 3. This makes de move out of cell 1. Using d, e we
start collecting objects required for simulation. This is accomplished by
the rules 4 to 7. These rules allow d, e to move right to any distance, and
while coming back, they fetch symbols of E.
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– The movement of d, e should be stopped after some time, since otherwise,
an infinite computation will be induced. This is done by rule 8. This
makes symbols d′, e′ move out of cell 1 together. The symbols d, e return
to cell 1 together.

– Next, we start the simulation of the register machine by bringing in cell
1, objects representing the initial instruction. We use rules 9 and 10. This
sends out d′′, e′′ from cell 1, and brings inside cell 1, the objects l0, l′0
representing the initial instruction. Note however, that in case the objects
l0, l

′
0 are not in cell 2, we use the rules 11 and 12, bringing in a copy of

g from cell 2 to cell 1. This further induces an infinite computation due
to the rules 13 and 14.

2. Simulation an ADD instruction li : (ADD(r), lj). This is handled by the
following rules: (1, li; ar, 2), (1, l′i; lj l

′
j , 2). Thus, while li brings in the object

ar from cell 2, l′i brings in lj as well as a primed version of it. Now, using
lj , l

′
j, we can simulate instruction j. The only thing that needs to be handled

here is the possibility of ar, lj l
′
j not being in cell 2. This is done by adding the

rules (1, li; z, 2), (1, l′i; z, 2), which brings into cell 1, the object z and induces
an infinite computation by rules 13, 14.

3. Simulation of a SUB instruction li : (SUB(r), lj , lk).

1. (1, l′i; l
′′
i , 2)

2. (1, l′′i ; 2, Li)
Register 1 non-zero Register 1 is zero

3. (1, liar; l′′′j , 2)
4. (1, Lil

′′′
j ; 2, lj l

′
j)

5. (1, liLi; lkl′k, 2)

To start with, we always use rule 1. This exchanges l′i in cell 1 with l′′i of
cell 2. If register i was non-zero, then rule 3 will be applicable in parallel
with rule 1. This would bring in l′′′j from cell 2 in exchange for arli of cell
1. Thus, we would have at the end of step 1, l′′i , l

′′′
j in cell 1. Then rule 2 is

used, which brings in cell 1, Li in exchange for l′′i . Finally, rule 4 is used,
bringing in cell 1, ljl′j . However, if register i was zero, then rule 3 will not
be applicable, and hence, rule 4 also will not be applicable. Then the only
rule to be used will be rules 1, 2, 5.

4. Halting : Finally, if the register machine halts, we will have lh in cell 1 and
then, there are no more instructions to be simulated. It is clear from the
above set of instructions that if Π halts, then the register machine must
have entered lh and conversely, if the register machine halts, then a halting
configuration can be arrived at in Π by following the rules correctly, and cell
1 will contain lh. �


Next, we prove the universality of bio-Turing machines with only symport rules.
We obtain the universality with only 1 differentiated cell and symport rules of
weight at most 3.
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Theorem 2. 1RE = 1LTPk(symr) for all k ≥ 1, r ≥ 3.

Proof. We prove the inclusion 1RE ⊆ 1LTP1(sym3). To prove the above in-
clusion, let us consider an arbitrary register machine M = (m,H, l0, lh, I), with
contents n in its register 1 and all other registers empty.

Let us construct a bio-Turing machine Π which recognizes strings an
0 if and

only if n ∈ N(M), which will prove our claim. Let Π = (O, $, 1, efw1, dgw,R)
where:

O = E ∪ {a0, e, f} ∪ {l
′
, liv, lv, lviii, lix},

E = {ai | 1 ≤ i ≤ m} ∪ {l, l′′, l′′′ , lvi, lvii | l ∈ H} ∪ {d, g},
w1 contains one occurrence of each l

′
, liv, lv, lviii, lix for each l ∈ H,

w contains all symbols from E exactly once,

The initial configuration is

a0efw1 a0dgw a0dgw . . . a0dgw $dgw dgw . . . dgw . . .

The set R of rules is constructed as follows.

1 (∗, λ;x, ∗+ 1), x0 ∈ {a0, $} 2 (1, λ; a0, 2)
3 (1, λ; d$, 2) 4 (1, de;λ, 2)
5 (∗, e;λ, ∗+ 1) 6 (∗, λ; eα, ∗+ 1), α ∈ E
7 (1, λ; el0, 2) or (1, λ; eg, 2) 8 (1, fg;λ, 2)
9 (∗, f ;λ, ∗+ 1)

Initialization : All copies of a0 are brought into cell 1 by rules 1,2. We bring $
in cell 1, by means of rule 3. Next, e enters cell 2, by means of rule 4. We now
use the object e in order to bring in cell 2 arbitrarily many objects from the set
E, and to this aim, use rules 5, 6. At some moment, we stop this process, by
bringing e back to cell 1 together with l0, the starting label of M , by means of
the rule 7. The possibility of some object not present in cell 2 should lead to an
infinite computation. This can be done by rules 8, 9.

1. Now we simulate the instructions of M . An ADD instruction l1 (ADD(r), l2)
is simulated by the following rules: (1, l1l′1;λ, 2), (1, λ; l′1l2ar, 2). The object l1
exits from cell 1 together with the carrier l′1, which comes back together with
the correct label l2 and one copy of ar. In case l2 or ar is not present in cell 2,
use (1, λ; l′1g, 2), which will induce an infinite computation.

2. Simulation of a SUB instruction l1 : (SUB(r), l2, l3): We start with rule 1,
the object l1 exits cell 1 together with l′1. Rule 2 brings the objects l

′′
1 and l

′′′
1

into cell 2. Rules 3, 3’ are applied in parallel; l
′′
1 checks whether any ar is

present in cell 1; in the affirmative case it exits cell 1 together with liv1 , at
the same time l

′′′
1 exits cell 1 together with the object lv1 . Next, rules 4, 4’ are

applied in parallel; liv1 returns to cell 1 together with lvi
1 , lv1 returns with lvii

1 .
Next, 5” (or 5’) is used , by which lvii

1 exits cell 1 with l
′′
1 , l

viii
1 (lvi

1 and lix1 ),
depending on whether r was empty or not. Finally, 6” or 6’ is used, and
objects lviii

1 , lix1 return to cell 1 with either l2 or l3.
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1. (1, l1l
′
1; λ, 2), 2. (1, λ; l′1l

′′
1 l

′′′
1 , 2) or (1, λ; l′1g, 2)

3. (1, l
′′′
1 lv1 ; λ, 2), 4. (1, λ; lv1 lvii

1 , 2) or (1, λ; lv1g, 2)
Register 1 non-zero Register 1 is zero
3’. (1, l

′′
1 liv1 ar; λ, 2)

4’. (1, λ; liv1 lvi
1 , 2) or (1, λ; liv1 g, 2)

5’. (1, lvii
1 lvi

1 lix1 ; λ, 2)
6’. (1, λ; lix1 l2, 2) or (1, λ; lix1 g, 2)

5”. (1, lvii
1 l

′′
1 lviii

1 ; λ, 2)
6”. (1, λ; lviii

1 l3, 2) or (1, λ; lviii
1 g, 2)

3. Halting : When M halts, then we have lh in cell 1, and since there are no
more instructions to be simulated, Π halts. Conversely, for every halting
computation in Π we can find a halting computation in M . �


We now investigate the computational capacity of bio-Turing machines in the
arbitrary case. It was conjectured in [1] that one can even recognize languages
over arbitrary alphabets. We settle this in an affirmative way here by proving
the following theorem.

Theorem 3. RE = LTPk(antir) for all k ≥ 2 and r ≥ 2.

Proof. Consider a language L ⊆ V ∗, for some V = {b1, b2, . . . , bk}, which is
accepted by a register machine M = (n,H, qs, qh, I).

We will construct a bio-Turing machine Π which recognizes strings w ∈
V ∗, w ∈ L if and only if M halts when started with valk+1(w) in its first register;
in the halting step, all registers of the machine M are empty. This will imply
any recursively enumerable language over arbitrary alphabets can be recognized
in this way.

Π = (O, $, 2, w1, w2, zw,R)

where:

O = E ∪ {e, f, g, z, c1, c2, . . . , ck, b1, b2, . . . , bk},
E = {ai | 1 ≤ i ≤ n+ 2} ∪ {l, l̄, l′ , l′′ , l′′′ , liv | l ∈ H}
∪ {qs,j , qs,j,t | 1 ≤ i ≤ k, 1 ≤ t ≤ j − 1} ∪ {c, qs,any, qmove},

w1 = z,

w2 = efggzc1c2 . . . ck,

w contains all symbols from E exactly once,

and the set R of rules is constructed as follows.
Idea of construction is the following: Starting in the initial configuration, we

bring arbitrarily many copies of E in cell 2; at some moment, we stop this and
we introduce c in cell 1, triggering in this way the computation of valk+1(w).
Whenever a symbol bj is introduced in cell 1, j copies of an+1 are also introduced.
Assume that we have some m copies of an+2 present in cell 1. We multiply this
number m with k + 1, passing from the m copies of an+2 to km copies of an+1.
In this way, we have km + j copies of an+1, which corresponds to the value
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in base k + 1 of the string we introduce in the system. After completing this,
we change all objects an+1 with objects an+2 and we continue. The presence of
the state-object qmove in cell 1 will trigger the register machine Mmove which
changes all symbols an+2 with a1, and ends in the label qs(the initial label of
M), which will start the computation of M .

The contents of each register j of M will be represented by the number of
copies of aj present in cell 1. The computation in Π will halt only if the compu-
tation in M halts, and conversely, for every halting computation in M we can
find a halting computation in Π .

1. We use the object e in order to bring in cell 2 arbitrarily many objects from
the set E, and to this aim we use the rules

(2, ef ;λ, 3), (1, λ; eg, 2), (1, g; g, 2),
(∗, e;λ, ∗+ 1),
(∗, λ; eα, ∗+ 1), (2, λ;α, 3), for all α ∈ E.

The object f remains in cell 3, while e goes to the right at any distance,
comes back with any symbol α, and the process is repeated an arbitrary
number of time. All objects α brought to cell 3 are sent immediately to
cell 2.

2. At some moment, we stop this process, by bringing e back to cell 2, by means
of the rule

(2, λ; e, 3).
3. We now use the object e in order to bring c in cell 1, and to this aim we use

the following rules

(1, λ; ce, 2), (1, λ; eg, 2), (1, g; g, 2).

From now on, no rule from the previous groups can be used, because the
necessary pairs of objects are not in the right places.

4. The introduction of bj and j copies of an+1 is done by the following rules

(1, cbj ; cj, 2),
(1, cj ; bjqs,j , 2), (1, cj; g, 2),
(1, qs,j ; qs,j,1an+1, 2), (1, qs,j ; g, 2) for 1 ≤ j ≤ k,
(1, qs,j,t; qs,j,t+1an+1, 2), (1, qs,j,t; g, 2), for 1 ≤ j ≤ k

and 1 ≤ t ≤ j − 1,
(1, qs,any; bjqs,j , 2), (1, qs,any; g, 2), for 1 ≤ j ≤ k.

When qs,j,j is introduced in cell 1, we pass to the multiplication by k + 1
of the available copies of an+2. This can be done by a register machine
Mj = (2, Ij , qs,j,j , qs,any), with the following instructions:

qs,j,j : (S(n+ 2), qj,1, q
′
j),

qj,t : (A(n+ 1), qj,t+1, qj,t+1), for all 1 ≤ t ≤ k,

qj,k+1 : (A(n+ 1), qs,j,j , qs,j,j),

q
′
j : (S(n+ 1), q

′′
j , qs,any),

q
′′
j : (A(n+ 2), q

′
j , q

′
j).
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The two registers of Mj were numbered with n + 1, n + 2 because Mj will
be integrated in a large machine, with n+ 2 registers.

5. In order to move bj ’s and $ towards cell 2, we use the following rules:

(2, λ; bj, 3), (∗, λ; bj , ∗+ 1), (2, λ; $, 3), (∗, λ; $, ∗+ 1)
(1, z; bibj, 2), (2, z; bibj, 3), (∗, z; bibj , ∗+ 1), for 1 ≤ i, j ≤ k
(1, z; $bj, 2), (2, z; $bj, 3), (∗, z; $bj, ∗+ 1), for 1 ≤ i, j ≤ k
(2, zz;λ, 3), (∗, zz;λ, ∗+ 1).

The idea is to use the object z to sense the appearance of any bibj in the
adjacent cell. If it founds any pair, then the object z moves to the next cell
from where it moves to right forever and the system never halts. This is to
ensure the order of the symbols in the input string.

6. We bring $ in cell 1, by means of the rule

(1, λ; $qmove, 2).

This will trigger the register machine Mmove(whose initial label is qmove),
which changes all symbols an+2 with a1, and ends in the label qs(which is
the initial label of M).

7. We simulate the register machine, by means of the following rules. An ADD
instruction l1 : (ADD(r), l2) ∈ R is simulated by using the following rules:

(1, l1; l2ar, 2), (1, l1; g, 2).

The label l1 in cell 1 is exchanged with l2ar. If cell 2 does not contain the
necessary objects l2, ar, then we have to use the rule (1, l1; g, 2) and the
computation will never halt.

8. A SUB instruction l1 : (SUB(r), l2, l3) ∈ R is simulated by means of the
following rules:

(1, l1; l̄1l
′′′
1 , 2), (1, l1; g, 2),

(1, l̄1l
′′′
1 ; l

′
1l

′′
1 , 2), (1, l̄1l

′′′
1 ; g, 2),

(1, l
′
1ar; l

′′′
1 , 2),

(1, l
′′
1 ; liv1 , 2), (1, l

′′
1 ; g, 2),

(1, liv1 l
′′′
1 ; l2, 2), (1, liv1 l

′′′
1 ; g, 2),

(1, liv1 l
′
1; l3, 2), (1, liv1 l

′
1; g, 2).

The first two pairs of rules are meant to ensure that l
′′′
1 is present in cell

2; if this is not the case, then the trap object g comes to cell 1 and the
computation will not halt. After making sure that l

′′′
1 is present in cell 2 and

if at least one copy of ar is in cell 1, then we use the rule (1, l
′
1ar; l

′′′
1 , 2), and

at the same time l
′′
1 is exchanged with liv1 . If liv1 finds l

′′′
1 in cell 1, then we

will bring l2 in cell 1, otherwise the object l3 is brought to cell 1. Note that
all the above rules except the third one have companion rule, hence they
have to be used, otherwise the computation never stops. This is to make
sure that if the computation in Π halts, then it is not due to the shortage
of necessary objects in cell 2. If the computation in M stops, then also the
computation in Π stops. Conversely for every halting computation in M we
can find a halting computation in Π , which proves our result. �
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Having seen some universality results using one and two differentiated cells, we
examine the power of machines with no differentiated cells. All cells have the
same w, and there is some input written on the first n cells, n ≥ 0. We now show
that even these systems are capable of recognizing complex languages, which is
rather surprising.

Theorem 4. 3LTP0(anti2)−REG �= ∅.

Proof. Construct the machine Π = (O, $, 0, w,R) with O = {a, b, d, g}, w = {g}
and rules R as follows:

1. (∗, d; a, ∗+ 1)
2. (∗, b; $, ∗+ 1)
3. (∗, dg; b, ∗+ 1)
4. (∗, dg; d, ∗+ 1)
5. (∗, a; $g, ∗+ 1)
6. (∗, gg;λ, ∗+ 1)

It can be seen that L(Π) = b∗ ∪ {wdanbn | w ∈ {a, b}∗, n ≥ 0} ∪ {wdanαbn |
α �= d, w ∈ {a, b}∗, n ≥ 0}.

The working details of the machine are as follows: From the rules, it can be
seen that the symbol d moves forward by exchanging an input symbol a, and
the end marker $ moves backward by exchanging an input symbol b. An infinite
computation is induced if $ comes next to symbol a, or if d comes before a b.
Under these conditions, two symbols g are put in the same cell, which produces
an infinite computation by rule 6. Thus, it is clear that g cannot be part of the
input. The input clearly has to be over {d, a, b}. We cannot have two d’s in the
input, since this would again induce an infinite computation, by rule 4.

Since the symbol d moves only forward (till it comes before $) and $ backward
(till it comes next to d), we can consider strings of the kind wdw′$, where
w ∈ {a, b}∗. The claim now is that w′ is either of the form anbn, n ≥ 0 or
anαbn, α �= d, n ≥ 0. Clearly, if w′ = aibj , i �= j, j + 1, then either $ will come
across an a or d will come across a b, giving an infinite computation. Thus, the
possible forms for w′ are anbn, an+1bn, anbn+1, n ≥ 0. Further, we can have a
string over b∗ as the input, since this would make $ move backward till the first
b, and then stop. It is not possible to have a’s in the input without d, since the
$ would come next to some a at some point of time, and induce an infinite loop.
Thus, clearly, L(Π) = b∗ ∪ {wdanbn | w ∈ {a, b}∗, n ≥ 0} ∪ {wdanαbn | α �=
d, w ∈ {a, b}∗, n ≥ 0}, which is not regular. �


5 Conclusion

We have investigated the power of bio-Turing machines using zero, one and two
differentiated cells respectively. The universality results with only one differenti-
ated cell are interesting, and we conjecture that the same results will hold good
for any arbitrary alphabet. Further, we believe that even in the one alphabet
case, as far as universality goes, Theorems 1,2 are optimal with respect to the
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number of differentiated cells used. It is of definite interest to explore whether
the weight of the rules used can be reduced. Further, more examples of complex
languages using zero differentiated cells needs to be worked out to understand
the power of the model.

References

1. F. Bernardini, M. Gheorghe, N. Krasnogor, Gh. Păun, Turing Machines with Cells
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Abstract. Intelligent autonomous robotics is a promising area with
many potential applications that could benefit from non-traditional mod-
els of computation. Information processing systems interfaced with the
real world must deal with a continuous and uncertain environment, and
must cope with interactions across a range of time-scales. Robotics prob-
lems resist existing tools and, consequently, new perspectives are needed
to address these challenges. Toward that end, we describe a dynamics-
based model for computing in large-scale distributed robot systems. The
proposed method employs a compositional approach, constructing ro-
bot controllers from ergodic processes. We describe application of the
method to two multi-robot tasks: decentralised task allocation, and col-
lective strategy selection.

1 Introduction

Intelligent autonomous robotics is the study of autonomous agents coupled with
the physical world. Robots are equipped with sensors to perceive their envi-
ronment and actuators that allow aspects of the agent, and often parts of the
environment, to be controlled. Even robots with limited information process-
ing capabilities can exhibit complex, nontrivial behaviour due to the feedback
introduced between the robot and its environment. Systems like autonomous
robots, that interface with the world, introduce several unique challenges. We
highlight those challenges that may be best addressed by non-traditional com-
puting ideas, illustrating that robotics is a potentially rich application area for
broad, alternative notions of computation.

This paper also considers the specific problem of producing predictable task-
oriented collective behaviours in systems of many simple robots, or so-called
swarm robot systems. The word “swarm” is a reference to those natural systems
which inspire the research. Several biological systems are capable of operating in
distributed and decentralised ways, exploiting synergism of simple individuals,
and achieving robustness through massive redundancy. We wish to construct
artificial systems with similar features, which is the subject of ongoing research.

We describe a method for programming swarm robot systems applicable to a
range of tasks domains. The method explores a dynamics-based formalism pri-
marily using the composition of elementary processes, each possessing the ergodic

C.S. Calude et al. (Eds.): UC 2006, LNCS 4135, pp. 254–266, 2006.
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property. Statistical mechanics techniques allow a link to be established between
individual (microscopic) interactions and the group (macroscopic) behaviour.
The result is an approach for structuring collective interactions in loosely-coupled
distributed systems, which emphasises equilibrium states rather than the steps
necessary to achieve particular operations.

In order to demonstrate our method, we consider two complementary vari-
ations on an entomologically-inspired multi-robot foraging task. We show that
our method is sufficient to enable group coordination in both tasks. This also
serves to demonstrate the types of capabilities of interest within the multi-robot
community. We present data from large-scale simulations.

2 Robotics and Its Challenges

Researchers from several disciplines have shown an interest in synthesising,
analysing and studying autonomous system behaviour. The cybernetics commu-
nity, with its basis in control theoretic ideas, produced early pioneering systems
using analogue electronic methods (e.g., [29]). Later, some within the AI com-
munity assumed the goal of constructing artificial beings capable of exhibiting
intelligent behaviour. [4] recently produced a comprehensive history and discus-
sion of the field.

2.1 Intelligent Robotics

For several years the AI community attempted to apply search and planning
techniques to robotics problems. In the late 1980’s arguments against the tra-
ditional AI methods were put forward by Brooks and his collaborators (see for
example [8]). The arguments highlighted assumptions which ignored key aspects
of robot systems, such as the implicit belief in the physical symbol hypothe-
sis [23], and an assumption that symbolic search could become tractable.

Robots inhabit a continuous world. Traditional planning methods however,
require discretization. Any robot relying on a discrete representation for its suc-
cessful functioning may become brittle, with small errors causing the robot’s
beliefs about the world to diverge from reality. The result is execution of inap-
propriate actions. Some viewed this as a fundamental shortcoming of symbolic
representations. Subsequent researchers explored alternatives, like connectionist
methods [22], while others have introduced randomised algorithms for planning
over continuous spaces [18], or highly unorthodox methods [1]. Currently, proba-
bilistic techniques for explicitly representing and reasoning about the world are
the most popular [25]. However, the world is generally a dynamic place and few
explicit representations are able to provide machinery for updating models over
time.

The physical world is fraught with uncertainty. In addition to the noisy sen-
sors and inaccurate actuators, no robot can reasonably expect to have complete
information about the environment in which it finds itself. Uncertainty presents
a challenge to the robot as well as the researcher intending to model the world.
Many of the methods for designing industrial robots are inappropriate when
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robots are expected to operate in unstructured environments. For example, an
assumption of known friction constants becomes tenuous.

Robotic systems operate across disparate time-scales. The physical dynamics,
hardware interfaces, and high-level computation typically each execute with fre-
quencies that are orders of magnitudes apart. The task specification itself may
have non-trivial timing requirements. In all but the most benign environments,
robots will have real-time constraints in order to ensure survival and maintain
safety through obstacle avoidance. Often the robot has multiple high-level goals
(typically several will be time-extended) that must be reconciled with the lower-
level constraints.

The choice of computing model dictates the way one approaches any particular
problem. [7] has argued that a dominant computing model has effected think-
ing about intelligence itself. A re-examination in this context has changed the
perception of robots and their role in robot-environment interactions. However,
beyond a few biological inspirations and proposals for novel controller architec-
tures, a comprehensive re-examination of alternative computing paradigms is yet
to come to robotics.

2.2 Multi-robot Systems

There are numerous task domains in which multiple robots operating concur-
rently offer advantages over a single robot. A task that is impossible for an
individual may be feasible for a group. Also, additional robots may improve
performance—although typically only up to a point. After that, additional robots
aggravate resource conflicts, thus making sophisticated allocation and manage-
ment policies necessary. Unlike traditional distributed systems, communication
cannot always be assumed. Explicit wireless communication may be ephemeral.
Further, the notion of implicit communication, through a shared environment,
rather than through a dedicated communication channel, is particularly relevant
in multi-robot systems.

Swarm systems follow biological inspirations. They are usually homogeneous
groups of simple robots, which are individually minimalist [10] in that they are
an attempt to find the smallest set of capabilities necessary to achieve a par-
ticular task. Frequently, implicit communication is the only form of interaction
among the robots. Examples of implicitly coordinated systems include instances
of puck clustering and sorting. Simulations have been used to hypothesise about
the sensing and computational requirements on individual ants [9]; experiments
with real robots showed that fewer sensing capabilities are required from in-
dividuals because physical dynamics can aid the clustering process [3]. Further
robot experiments showed that overall performance depends critically on several
physical features of the experiment and the robots themselves [14]. Minimalist co-
operative box-pushing [17], again inspired by social ants, has been demonstrated
on physical robots. In those results, positive feedback has lead to self-organised
task-achievement [6] of the group as a whole. Specific mechanisms from nature
have also been generalised, such as the use of pheromone trails, which have been
employed in robotics [21,26].
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In stark contrast to swarms are multi-robot systems employing explicit coor-
dination methods [16]. These systems use explicit communicative acts generated
by a distributed algorithm executing as a layer within an otherwise standard
single-robot controller. Such designs may target heterogeneous robot systems,
often with fewer robots (≤ 10) than contained in swarms. The physical proper-
ties of the robots are not directly considered, whereas in swarm systems, robot
physics may be critical for task-achievement. Programming explicitly coordi-
nated systems is algorithmic, while swarms are often better treated as dynamic
systems.

When considering a large swarm of robots, in addition to distinct time-scales,
the system can be characterised at multiple spatial scales. Local microscopic
interactions occur between individual robots. Since the individual robots act au-
tonomously, programming must ultimately be grounded at the microscopic scale.
Descriptions of the properties of the complete system (or large parts, relative
to the radius of communication) are considered the macroscopic level-of-detail.
Collective properties are exposed at this level by considering average system
behaviour. Structured local dynamics can produce complex global phenomena.
Simulated distributed systems of simple interacting agents have exhibited global
behaviour ranging from point and periodic attractors to chaos [13] and, of course,
there are classic examples of those capable of universal computation [5].

Challenges in dealing with robot systems, and other systems that interface
computation with the physical world, have a large number of potential applica-
tions. Visions of a future with ubiquitous computing [28] are far more likely to
be realised if we have an appropriate computational model. We believe that such
a model would tolerate random failures, allow multiple levels-of-description, and
be capable of dealing with approximate and incomplete information. The key
question is whether such a model exists, and if so, whether the model is suffi-
ciently expressive. A model which satisfies the requirements, but which sacrifices
the ability to perform task-oriented computation, is of little use.

3 Large-Scale Multi-robot Systems

Next, we consider the problem of prescribing a control and communication pol-
icy for homogeneous large-scale systems with hundreds of robots, i.e., robot
swarms. Such systems are already conceivable within a research setting, but sev-
eral engineering issues must be overcome in order for such systems to become
common. Hundreds of robots would be demanding for most existing methods,
as few researchers evaluate scaling properties for more than twenty robots. It
is at these numbers of robots for which the method we propose here begins to
become feasible.

The method achieves distributed computation through the interactions
of coupled processes with the ergodic property. This places a condition on
the temporal structure of the process dynamics so that all accessible regions
of the processes phase-space can be explored (see pg. 259 for the formal de-
finition). The ergodic property permits programming to occur at an elevated
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level-of-description. The underlying philosophy is that microscopic details are
not always necessary for controller construction.

3.1 Definitions

We take a process P to be a tuple comprising a state-space definition S and
a dynamics function Φ, writing P = 〈S, Φ〉. The set S need not be finite (nor
countable), and represents all possible states a process could occur in. Also Φ
is a generally non-deterministic dynamics that produces the process trajectory
s(t) ∈ S for all non-negative t ∈ Z+. Suppose such a trajectory is produced by
each of the n robots executing process P . A global snap-shot is given by the
state vector s(t) = [s1(t), s2(t), · · · , sn(t)]. The microstate vector s(t) captures
the complete microscopic details of process P across all of the n robots for time
t. The system-wide evolution can be interpreted in terms of vectorised dynamics
function Φ constructed by n copies of Φ operating on each component in s(t) to
yield a s(t+ δt).

We consider a restriction to the general Φ : S → S so that the ith element
may depend only on nearby robots, that is, robots within a given communication
disk. Each robot requires only local information in order to update it’s internal
state for each process, and so all the dynamics functions we consider will have
this form.

An arbitrary function G : S → R produces an associated equivalence relation
s ∼

G
r ⇐⇒ G(s) = G(r) and hence partitions S into equi-G-valued equivalence

classes. Each class is called a macrostate. Any suitable G gives a macroscopic
view of the system in which any two microstates which are equivalent with
respect to ∼

G
are identified. A convenient interpretation is that any two such

states appear indistinguishable to an observer capable only of measuring G.
One question frequently asked is the relative number of states with G(·) = C1
and G(·) = C2. The set of microstates can be compared through the entropy,
calculated–following Boltzmann–as a log function of the set cardinality S(X) �
ln ||X ||.

3.2 Ergodicity

In a many degree-of-freedom dynamic system two factors direct the overall sys-
tem behaviour. First, the phase-space S, that is, the conceivable states avail-
able to the system. Second, the spatio-temporal dynamics Φ through which the
system explores those states. In designing a system expected to perform infor-
mation processing, the vast majority of approaches (and thinking) is directed
toward constructing sophisticated spatio-temporal dynamics. As already men-
tioned, even simple interaction rules can produce complex collective dynamics.
These complexities make the selection of rules in order perform a given task ex-
tremely difficult. Prediction of the system may require exact initial conditions,
perfect models, or may even be undecidable.

We propose that the dynamics Φ be chosen so as to enable prediction. Task-
oriented computation is performed through changes to the structure of S. Next,
we define what is meant by “enable prediction.”
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The average macrostate G likely to be externally observed from time 0 to T
is given by

GT � 1
T

T∫
0

G
(
Φt (s (0))

)
dt, (1)

where Φt (s (0)) =

t times︷ ︸︸ ︷
Φ (Φ (· · ·Φ (s (0)))) generates a single trajectory from initial

condition s (0).
Dynamics possessing the ergodicity property induce a probability measure on

the phase-space. More formally a system that exhibits ergodic dynamics has the
properties that:

1. A measure P : S → (0, 1] exists with
∫

s∈S
P(s) ds = 1

2. With any initial conditions the system will evolve exploring S entirely given
sufficient time. The probability of finding the system in states B ⊆ S is
given by the probability mass of P that lies within the sub-volume B of the
phase-space. That is Pr (s (t) ∈ B) =

∫
r∈B

P(r) dr.

The key here is that the current microstate places very “loose” restrictions on
future states, the dynamics is free to explore the state space. Long-term history
and initial conditions are not important in predicting the system’s trajectory.
Dynamics functions typically produce short-term temporal regularity. In such
cases, analysis must consider durations of sufficient length.

Measure P allows for the phase-space average of G defined as

〈G〉 �
∫

s∈S

P (s)G (s) ds. (2)

For ergodic processes long time-averages equal phase-space averages,

lim
T→∞

GT = 〈G〉. (3)

In other words the macroscopic behaviour of such processes can be described
by modelling the phase-space rather than resorting to simulation of the dynam-
ics. The value of the two means identified in Eqn. 3 is the called equilibrium
value of G.

3.3 Coupling Processes

The definitions thus far describe a method for predicting the mean macrostate
of a process executing on an homogeneous system of robots. They also show the
probabilistic nature of the law of increasing entropy. But in order to perform
any useful processing, multiple connected processes must be considered. First,
we must generalise the notion of a process by permitting parametrisation. Let
P (m) = 〈S(m), Φ(m)〉 denote one such process in which the phase-space and
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dynamics are variable and each depend on m. As already mentioned, it is the
phase-space which we are most interested in.

Suppose the robots are executing two parametrised ergodic processes: P 0(m)
= 〈S0(m), Φ0〉, P 1(n) = 〈S1(n), Φ1〉. Two state vectors s1(t) and s2(t), one for
each of the processes, gives the complete state of the system. Eqn. 2 can be
applied to each independent parametrisation (e.g., n = n0,m = m0) to calculate
expected behaviour.

The parametrised processes are coupled by defining a relation on the parame-
ters. The previous processes can be constrained so that m + n = C. A known
C implies that a single degree-of-freedom describes the parametrisation. We call
this a macroscopic degree-of-freedom. A dynamics can be defined that operates
on parameters m and n that respects the conservation constraint. If this cou-
pling dynamics is slow compared with P 0 and P 1 then the two processes can
be suitably modelled as a single composite process. This composite process can
be predicted as before, provided behaviour is analysed on long time-scales com-
pared to the coupling dynamics. The constraint relation structures a composite
phase-space from P 0 and P 1.

Clearly this procedure be applied repeatedly and recursively, while time-scales
remain suitable.

4 Example Problem Domains

Foraging is a canonical and one of the most widely studied tasks in distributed
robotics [2,12,20]. It is entomologically-inspired and requires robots to locate
items (called pucks) scattered throughout an environment, and transport them
back to a central location (called the home region).

4.1 Domain 1: Task Allocation

We consider a variation of foraging in which two varieties of puck exist, call them
type A and type B. Like [15], we consider the case in which each robot may
forage only one variety of puck at a time. The task allocation problem involves
switching robots from one variety to another in order to emulate the fractional
distribution of pucks within the environment. We measure the effectiveness of
the allocation by comparing the distribution of pucks within the environment
with the proportion of the robots foraging each type.

The robot controllers include traditional behaviours like obstacle avoidance,
basic searching, homing, etc. Two ergodic processes are layered above these
behaviours in order to provide each robot with a local strategy for choosing the
variety of puck to forage.

For n robots, define Pa(n,ma) = 〈{0, · · · ,ma} , Φa〉 where

Φa

[
sk(t), sl∈Ak(t)

]
= sk(t)−

∑
i∈Ak

ωk,i(sk(t), si(t))

+
∑

j∈Ak

ωj,k(sj(t), sk(t))
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where ωk,i(sk(t), si(t)) for i ∈ Ak are uniformly drawn integer random variables
constrained so that

∑
i∈Ak

ωk,i(sk(t), si(t)) ≤ αsk(t), (α = 10−2). The set Ak

gives the indices of robots within communication distance of robot k (which
technically depend on t). We require symmetrical neighbourhood sets so that
i ∈ Ak =⇒ k ∈ Ai. The dynamics rule says that robot i distributes random
portions of its current state value among its neighbours. Despite using only
local communication, this interaction rule conserves the global property, i.e.,
∀t,

∑n
i si(t) = K. We set initial conditions so that K = ma.

This process has two defining parameters: n and ma. In the case where n $
ma, the total number of states is a simple combinatorial exercise,

||S(n,ma)|| =
(
ma + n− 1
n− 1

)
.

Define Gj([s1, . . . , sn]) = sj . To get the average state for robot j, we apply
Eqn. 2. Formally proving that Φa is ergodic is beyond the scope of this paper, but
observe that the dynamics is symmetrical with respect to robots: no single robot
is favoured over another. The dynamics randomly explores the configuration
available to it. The full density function is unnecessary to calculate 〈Gj〉 = ma

n .
A second process Pb(n,mb) is defined identically. Dynamics Φa and Φb explore

their respective state spaces with expected state calculable in terms of n, ma

and mb. The system is initialised with ma = 105, mb = 105. These ma and mb

values are adjusted on each puck observation when the robot alters the local
state of the processes sa(t) and sb(t). Observation of an A puck causes the
following transition: sa(t + δt) = (1 − γ)sa(t) and sb(t + δt) = γsa(t) + sb(t)
where γ is a tunable parameter. The converse happens on observing a B puck.
Each robot independently decides which type of puck to forage using sa(t) and
sb(t), the local states of the two processes. Pucks of variety A are chosen with
probability pra−puck = sa(t)/(sa(t) + sb(t)). Thus, the transitions simply skew
the probability by a factor of γ.

Robots randomly encounter either type A or B pucks, making observations
of each type in proportion with the puck distribution. These observations are
smoothed by the dynamics of the two processes. Low probability observations
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Fig. 1. Performance of task allocation processes. The vertical axis gives the proportion
of tasks (for the broken line), and the division of robots among tasks (the solid lines).
Plots show mean and standard deviation for 5 runs.
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(e.g., observing ten types of minority puck) are averaged out over the entire
group of robots.

We simulated 100 robots within a 64m×64m arena. Initially, 3000 pucks were
randomly scattered throughout the arena. Pucks started in an initial 50%/50%
distribution. Robots explored from random initial locations. After stumbling on
an appropriate puck, the robot would transport it to the home region. For each
puck foraged, a new one, of the same type, was introduced at a random location.
Thus the puck density was maintained throughout.

The puck distribution was altered at three stages, at t = 2000 it was changed
to 95%/5%, at t = 8000 to 5%/95%, and at t = 13000 to 75%/25%. In Figure 1,
the dotted line shows the puck distribution. The plot shows experimental runs
with three different settings for the γ parameter. The system shows hysteresis
and a response time dependant on γ. In all cases, however, the system adapts
so as to find a distribution applicable for the environmental conditions.

4.2 Domain 2: Collective Strategy Selection

Interference can adversely affect task performance in a multi-robot system. It is a
particularly important factor in large-scale robot systems. Robot foraging is one
of few problem domains for which interference has been well-studied (e.g., [12])
and is suitable for large-scale systems. Efficient strategy selection can ameliorate
the negative effects inter-robot interference. More generally, however, this form
of distributed decision-making underlies many tasks.
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Fig. 2. Plot of the number of pucks within home region versus time for both foraging
strategies (with 250 robots). Left figure has low puck density, right has high puck
density. Plots show mean and standard deviation for 5 independent simulation runs.

In this domain we consider two distinct strategies for foraging (with a single
puck type). The first, homogeneous method, involves each robot searching for a
puck, locating a puck, and delivering that puck home [12]. In the alternative,
bucket brigading method [19], each robot deals with only those pucks in a partic-
ular sub-region of the environment (also termed the caste method [12]). Figure 2
shows performance data for simulations with 250 robots within a 25m×25m
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arena. The left graphs show data for 500 pucks. With that puck density the ho-
mogeneous strategy out performs bucket brigading. But with higher puck density
(right graph is for 2000 pucks) the homogeneous strategy is inferior to bucket
brigading. The homogeneous strategy results in considerable interference around
the home region with high puck densities because a large number of pucks results
in a short mean time between puck discoveries. Bucket brigading becomes more
effective with increasing puck density because the robots have no perception of
pucks at a distance. On the other hand, with too few pucks each robots takes a
long time to find pucks dropped by its peers.

Each robot’s controller consists of an implementation of both foraging strate-
gies, with a binary variable to control the one currently in use. This vari-
able provides an interface to the two coupled ergodic processes. The first is
the process defined in the preceding section; call it Pa(n,ma). The second is
defined as Pc(n,mc, ec) = 〈{−1,+1} , Φc〉. Again that is for n robots. Here
mc =

∑n
i=1 sk(t). Less obviously, ec =

∑
j,k, s.t. j∈Ak

−sj(t)sk(t) measures the
number of neighbours that have the same state. The value of mc gives a measure
of “agreement” among robots, while ec a measure of “frustration.” A range of
mc values are applicable for a given ec.

The dynamics Φc is constructed so that ec remains constant. The process has
only two states and the transition from one state to another (e.g., +1 to −1)
is called a flip. Two robots within communication range, say i and j, calculate
δec

i and δec
j , these are the changes in ec that would result if robot i and j flip

states. Both can be calculated using local information. If δec
i = −δec

j then the
two robots carry out this flip operation.

Both Pc and Pa execute a coupling dynamics that operates on the ec and ma

parameters. The process on robot i may flip with a resulting δec
i , provided that

this can be supplanted by subtracting an equivalent value from Pa. Thus a large
ma value can result in an increased ec and hence effect the robot’s “agreement”
and, similarly, smallma results in decreased ec. The manner by which this change
occurs is crucial for strategy selection.

Analysis of Pc’s macroscopic behaviour is less obvious than Pa. The process
has the same structure as the Ising ferromagnetic model [11], which has been
well studied in the limit of infinite system size, and under controlled temperature
conditions. In the limit the model exhibits a symmetry breaking phase-transition
from mixed spin values (with mc ∼ 0) to a state with alignment (mc = 1 or
mc = −1).

During the foraging task, local sensing of task progress enables the ma value
to be tuned appropriately. While bucket brigading, each robot kept track of
the time between puck discoveries, a noisy local measurement of puck density.
For homogeneous foraging, interference was estimated by measuring distance
travelled for a short time. Both of these decreased the local value of sa(t) on
each robot. Each time a puck was dropped over the home region sa(t) was
decreased. The system achieves a steady-state between ma creation (through
interference, obstacle avoidance) and ma deletion (from pucks homed). Different
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puck densities have different steady-states, and a mismatch of puck density and
strategy is sufficient to drive the phase transition of Pc.

5 Discussion

Statistical mechanics methods enable predictions of behaviour by characteris-
ing macroscopically identical systems. These ensemble predictions are feasible
in systems with hundreds of robots, and with increasing system size predic-
tions become progressively accurate. We believe that, for large systems, existing
metaphors — e.g., message-passing — break down and must be superseded. We
thus explore and exploit the benefits afforded by the large number of degrees-of-
freedom, in which we include both aspects of the physical robot and controller
state-space.

The two foraging domains were carefully chosen. The “decentralised task al-
location” domain required estimation of a continuous quantity. It is typical of
the calculations and optimisation that might be performed by an implicitly co-
ordinated swarm system. Small local estimates can be used to make a decision,
and that can shared with other agents easily. This notion seems similar to the
Downhill Principle [27], but in a distributed sense.

On the other hand, explicitly coordinated systems often solve discrete prob-
lems with hard constraints. For such problems, gradient techniques are not
useful. The “collective strategy selection” was intended to demonstration that
discrete notions can also be feasibly tackled with the ergodic process approach.
Since communication times are not zero, the system does take time to transition
between states. The transition is all-or-nothing, with infinite size.

An unconventional aspect of the proposed methodology is the focus on equi-
librium solutions rather than dynamics in computing. In a sense this is not unlike
the electronic analogue computers of the past, in which the initial transients were
ignored, with attention paid to steady-state solutions [24]. In robot systems, it is
envisioned that changes within environmental factors would trigger adaptation
within the ergodic processes, as they reach a new equilibrium.

6 Conclusion

This paper has argued that non-conventional computing models may be a way to
elegantly address the challenges raised by physically situated robots. We defined
our own compositional method for synthesising controllers for large-scale multi-
robot systems and proposed the use of ergodic processes as elemental distributed
building blocks. This contrasts with current methods that produce task-oriented
behaviour through dynamics with rich temporal structure. Two complementary
coordinated foraging problems were used to demonstrate the proposed method.
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15. C.V. Jones, M.J. Matarić, Adaptive Division of Labor in Large-Scale Minimalist
Multi-Robot Systems, IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1969–1974, Las Vegas, NV, Oct. 2003.
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